【題目】如圖,已知在平面直角坐標(biāo)系中,的面積為8,,,點(diǎn)的坐標(biāo)是.
(1)求三個(gè)頂點(diǎn)、、的坐標(biāo);
(2)若點(diǎn)坐標(biāo)為,連接,,求的面積;
(3)是否存在點(diǎn),使的面積等于的面積?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo).
【答案】(1),,;(2)2;(3)存在,點(diǎn)的坐標(biāo)為或.
【解析】
(1)根據(jù)三角形的面積公式和已知條件即可求出OA和OB,從而求出OC,即可求出結(jié)論;
(2)作軸于,根據(jù)梯形計(jì)算即可;
(3)先求出△ABC的面積,然后根據(jù)點(diǎn)P所在的象限分類討論,分別畫出對(duì)應(yīng)的圖形,根據(jù)的面積等于的面積列出方程即可求出結(jié)論.
解:(1)∵,,
∴,
解得,
∴,
∴,
∴,,.
(2)作軸于,如圖1,
梯形
.
(3),
當(dāng)點(diǎn)在第一象限,即,作軸于,如圖2,
梯形;
則,
解得,
此時(shí)點(diǎn)坐標(biāo)為;
當(dāng)點(diǎn)在第二象限,即,作軸于,如圖3,
梯形
則,
解得.
此時(shí)點(diǎn)坐標(biāo)為.
綜上所述,點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動(dòng)點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是( )
A. 4≥x>2.4 B. 4≥x≥2.4 C. 4>x>2.4 D. 4>x≥2.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,方格圖中每個(gè)小正方形的邊長為1,點(diǎn)A、B、C都是格點(diǎn).
(1)畫出△ABC關(guān)于直線MN對(duì)稱的△A1B1C1;
(2)直接寫出AA1的長度;
(3)如圖2,A、C是直線MN同側(cè)固定的點(diǎn),D是直線MN上的一個(gè)動(dòng)點(diǎn),在直線MN上畫出點(diǎn)D,使AD+DC最小.(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來往車輛的車速(單位:千米/小時(shí))情況,則下列關(guān)于車速描述錯(cuò)誤的是( )
A. 平均數(shù)是23 B. 中位數(shù)是25 C. 眾數(shù)是30 D. 方差是129
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地新建的一個(gè)企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購置污水處理器,并在如下兩個(gè)型號(hào)種選擇:
污水處理器型號(hào) | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺(tái)A型、3臺(tái)B型污水處理器的總價(jià)為44萬元,售出的1臺(tái)A型、4臺(tái)B型污水處理器的總價(jià)為42萬元.
(1)求每臺(tái)A型、B型污水處理器的價(jià)格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-1,-2),B(1,1),C(-3,1),△A1B1C1是△ABC向下平移2個(gè)單位,向右平移3個(gè)單位得到的.
(1)寫出點(diǎn)A1、B1、C1的坐標(biāo),并在右圖中畫出△A1B1C1;
(2)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC是等腰三角形,AB=AC,點(diǎn)D,E,F分別在AB,BC,AC邊上,且BD=CE,BE=CF.
(1)求證:△DEF是等腰三角形;
(2)猜想:當(dāng)∠A滿足什么條件時(shí),△DEF是等邊三角形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y=kx﹣1(k>0)的圖象與BC邊交于點(diǎn)E.當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com