【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BD交BD于點(diǎn)E,點(diǎn)F,M分別是AB,BC的中點(diǎn),BN平分∠ABE交AM于點(diǎn)N,AB=AC=BD,連接MF,NF.
(1)判斷△BMN的形狀,并證明你的結(jié)論;
(2)判斷△MFN與△BDC之間的關(guān)系,并說(shuō)明理由.
【答案】見(jiàn)解析
【解析】
解:(1)△BMN是等腰直角三角形.
證明:∵AB=AC,點(diǎn)M是BC的中點(diǎn),
∴AM⊥BC,AM平分∠BAC.
∵BN平分∠ABE,AC⊥BD,
∴∠AEB=90°,
∴∠EAB+∠EBA=90°,
∴.
∴△BMN是等腰直角三角形.
(2)△MFN∽△BDC.
證明:∵點(diǎn)F,M分別是AB,BC的中點(diǎn),
∴FM∥AC,.
∵AC=BD,
∴,即.
由(1)知△BMN是等腰直角三角形,
∴,即,
∴.
∵AM⊥BC,
∴∠NMF+∠FMB=90°.
∵FM∥AC.
∵∠ACB=∠FMB.
∵∠CEB=90°,
∴∠ACB+∠CBD=90°.
∴∠CBD+∠FMB=90°,
∴∠NMF=∠CBD.
∴△MFN∽△BDC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過(guò)A商品獲利潤(rùn)y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過(guò)A商品所獲的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下面是二次函數(shù)圖象的一部分,則下列結(jié)論中:①;②③方程有兩個(gè)不等的實(shí)數(shù)根;④.正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017山東省泰安市)如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點(diǎn)P是AC延長(zhǎng)線上一點(diǎn),且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點(diǎn)E,AB=1,CE:CP=2:3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大。
(2)說(shuō)明線段AC、CD、BD之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)海峽導(dǎo)報(bào)報(bào)道,為推進(jìn)漳州綠色農(nóng)業(yè)發(fā)展, 2018-2020年,漳州市將完成農(nóng)業(yè)綠色發(fā)展項(xiàng)目總投資414億元。已知漳州2018年已完成項(xiàng)目投資100億元,假設(shè)后兩年該項(xiàng)目投資的平均增長(zhǎng)率為x,依題意可列方程為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
(1)古希臘著名數(shù)學(xué)家歐幾里得在《幾何原本》提出了射影定理,又稱“歐幾里德定理”:在直角三角形中,斜邊上的高是兩條直角邊在斜邊射影的比例中項(xiàng),每一條直角邊又是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng).射影定理是數(shù)學(xué)圖形計(jì)算的重要定理.
其符號(hào)語(yǔ)言是:如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,則:(1)CD = AD·BD, (2)AC = AB·AD, (3)BC=AB·BD;請(qǐng)你證明定理中的結(jié)論(2)BC=AB·BD.
(結(jié)論運(yùn)用)
(2)如圖2,正方形ABCD的邊長(zhǎng)為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,過(guò)點(diǎn)C作CF⊥BE,垂足為F,連接OF,
①求證:△BOF∽△BED;
②若,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在△ABC中,AB=BC,將△ABC繞點(diǎn)A沿順時(shí)針?lè)较蛐D(zhuǎn)得△AB1C1,使點(diǎn)C1落在直線BC上(點(diǎn)C1與點(diǎn)C不重合),求證:AB1∥CB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com