如圖,經(jīng)過(guò)點(diǎn)A(-2,0)的一次函數(shù) y=ax+b(a≠0) 與反比例函數(shù) y=(k≠0)的圖象相交于P、Q兩點(diǎn),過(guò)點(diǎn)P作PB⊥x軸于點(diǎn)B.已知tan∠PAB=,點(diǎn)B的坐標(biāo)為(4,0).

 (1) 求反比例函數(shù)和一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)與y軸相交于點(diǎn)C,求四邊形OBPC的面積.

 

【答案】

解:(1)∵ A(-2,0),B(4,0),∴ AB=6.   

            ∵ tan∠PAB=, ∴ , 得BP=. ∴ P(4,) .

            把P(4,)代入y=中,得 k=36.

∴ 反比例函數(shù)的解析式為 y=

將A(-2,0), P(4,) 代入y=ax+b中,得  

解得    

∴ 一次函數(shù)的解析式為 y=

  (2)由(1)得C(0,). 

由題設(shè)可知四邊形OBPC是直角梯形,

∴四邊形OBPC的面積為S=(OC+BP)×OB=××4=24.

【解析】(1)利用三角函數(shù)求得P點(diǎn)坐標(biāo),即可求出反比例函數(shù)的解析式,通過(guò)A(-2,0), P(4,),求出一次函數(shù)的解析式

(2)根據(jù)直角梯形的面積公式求解

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、按要求畫(huà)圖:
(1)如圖,要從小河引水到村莊A,請(qǐng)?jiān)O(shè)計(jì)并作出一條最佳路線;

(2)如圖,經(jīng)過(guò)點(diǎn)D作DE⊥AB于E,作DF∥CB交AB于點(diǎn)F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南通)如圖,經(jīng)過(guò)點(diǎn)A(0,-4)的拋物線y=
1
2
x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=
1
2
x2+bx+c向上平移
7
2
個(gè)單位長(zhǎng)度,再向左平移m(m>0)個(gè)單位長(zhǎng)度得到新拋物線,若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•遼陽(yáng))如圖,⊙O經(jīng)過(guò)點(diǎn)B、D、E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)試說(shuō)明直線AC是⊙O的切線;
(2)當(dāng)AE=4,AD=2時(shí),求⊙O的半徑及BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通)如圖,經(jīng)過(guò)點(diǎn)B(-2,0)的直線y=kx+b與直線y=4x+2相交于點(diǎn)A(-1,-2),則不等式4x+2<kx+b<0的解集為
-2<x<-1
-2<x<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•北碚區(qū)模擬)如圖,經(jīng)過(guò)點(diǎn)A(-2,0)的一次函數(shù)y=ax+b(a≠0)與反比例函數(shù)y=
k
x
(k≠0)的圖象相交于P、Q兩點(diǎn),過(guò)點(diǎn)P作PB⊥x軸于點(diǎn)B.已知tan∠PAB=
3
2
,點(diǎn)B的坐標(biāo)為(4,0).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與y軸相交于點(diǎn)C,求四邊形OBPC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案