【題目】如圖,函數(shù)y=x的圖象與函數(shù)y的圖象相交于點P(1,m).
(1)求 m,k 的值.
(2)直線 y=2與函數(shù)y=x的圖象相交于點A,與函數(shù)y的圖象相交于點B,求線段 AB 長.
(3)直接寫出不等式x的解集.
科目:初中數(shù)學 來源: 題型:
【題目】臺州某校七(1)班同學分三組進行數(shù)學活動,對七年級400名同學最喜歡喝的飲料情況、八年級300名同學零花錢的最主要用途情況、九年級300名同學完成家庭作業(yè)時間情況進行了全面調(diào)查,并分別用扇形圖、頻數(shù)分布直方圖、表格來描述整理得到的數(shù)據(jù).
根據(jù)以上信息,請回答下列問題:
(1)七年級400名同學中最喜歡喝“冰紅茶”的人數(shù)是多少?
(2)補全八年級300名同學中零花錢的最主要用途情況頻數(shù)分布直方圖;
(3)九年級300名同學中完成家庭作業(yè)的平均時間大約是多少小時(結(jié)果保留一位小數(shù))?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求證:BE=AD;
(2)當α=90°時,取AD,BE的中點分別為點P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,在平面直角坐標系中,一次函數(shù)y=x+3交x軸于點A,交y軸于點B,點C是點A關(guān)于y軸對稱的點,過點C作y軸平行的射線CD,交直線AB與點D,點P是射線CD上的一個動點.
(1)求點A,B的坐標.
(2)如圖2,將△ACP沿著AP翻折,當點C的對應點C′落在直線AB上時,求點P的坐標.
(3)若直線OP與直線AD有交點,不妨設(shè)交點為Q(不與點D重合),連接CQ,是否存在點P,使得S△CPQ=2S△DPQ,若存在,請求出對應的點Q坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) y=-x+b 與反比例函數(shù)y=(x>0)的圖象交于 A,B 兩點,與 x 軸、y軸分別交于C,D 兩點,連接 OA,OB,過 A 作 AE⊥x 軸于點 E,交 OB 于點F,設(shè)點 A 的橫坐標為 m. 若 S△OAF+S 四邊形 EFBC=4,則 m 的值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,點C在劣弧AB上(不與點A,B重合),點D為弦BC的中點,DE⊥BC,DE與AC的延長線交于點E,射線AO與射線EB交于點F,與⊙O交于點G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)點點同學通過畫圖和測量得到以下近似數(shù)據(jù):
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β關(guān)于ɑ的函數(shù)表達式,γ關(guān)于ɑ的函數(shù)表達式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標;
(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中點,連結(jié)BE并延長交AD的延長線于G.
(1)求證:DG=BC;
(2)F是AB邊上的動點,當F點在什么位置時,FD∥BG;說明理由.
(3)在(2)的條件下,連結(jié)AE交FD于H,FH與HD長度關(guān)系如何?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸相交于點,直線經(jīng)過點,與軸交于點,與軸交于點,與直線相交于點.
求直線的函數(shù)關(guān)系式;
點是上的一點,若的面積等于的面積的倍,求點的坐標.
設(shè)點 的坐標為 ,是否存在 的值使得 最小?若存在,請求出點 的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com