【題目】如圖,在△ABC中,∠C=90°,點(diǎn)E是AC上的點(diǎn),且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,則AE等于(
A.3cm
B.4cm
C.6cm
D.9cm

【答案】C
【解析】解:∵DE垂直平分AB, ∴AE=BE,
∴∠2=∠A,
∵∠1=∠2,
∴∠A=∠1=∠2,
∵∠C=90°,
∴∠A=∠1=∠2=30°,
∵∠1=∠2,ED⊥AB,∠C=90°,
∴CE=DE=3cm,
在Rt△ADE中,∠ADE=90°,∠A=30°,
∴AE=2DE=6cm,
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解線段垂直平分線的性質(zhì)的相關(guān)知識,掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等,以及對含30度角的直角三角形的理解,了解在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x-6≥0的解集為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線)交x軸于AB兩點(diǎn),交y軸于點(diǎn)C,且對稱軸為直線x=―2 .

(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)若點(diǎn)P(0,t)是y軸上的一個動點(diǎn),請進(jìn)行如下探究:

探究一:如圖1,設(shè)△PAD的面積為S,令Wt·S,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、AD為頂點(diǎn)的三角形與RtAOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=AC,AD是△ABC的角平分線,EF垂直平分AC,分別交AC,AD,AB于點(diǎn)E,M,F(xiàn).若∠CAD=20°,求∠MCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算
(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)
(2)
(3)( )×(﹣30)
(4)
(5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙營服裝店老板到廠家選購A、B兩種型號的服裝,若購進(jìn)A種型號服裝9件,B種型號服裝10件,需要1810元;若購進(jìn)A種型號服裝12件,B種型號服裝8件,需要1880元,
(1)求A,B兩種型號的服裝每件分別多少元?
(2)若銷售1件A型服裝可獲利18元,銷售1件B型服裝可獲利30元,根據(jù)市場需求,服裝店老板決定,購進(jìn)A型服裝的數(shù)量要比購進(jìn)B型服裝數(shù)量的2倍還多4件,且A型服裝最多可購進(jìn)28件,這樣服裝全部售出后,可使總的獲利不少于699元,問有幾種進(jìn)貨方案如何進(jìn)貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型超市從生產(chǎn)基地以每千克a元的價格購進(jìn)一種水果m千克,運(yùn)輸過程中重量損失了10%,超市在進(jìn)價的基礎(chǔ)上増加了30%作為售價,假定不計超市其他費(fèi)用,那么售完這種水果,超市獲得的利潤是_____(用含m、a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)已知m=1+ ,n=1﹣ ,求代數(shù)式m2+2mn﹣n2的值;
(2)已知x+ = ,求代數(shù)式x﹣ 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點(diǎn)A和點(diǎn)B表示的教分別為﹣4和2,把點(diǎn)A向右平移( 。﹤單位長度,可以使點(diǎn)A到點(diǎn)B的距離是2.

A. 2或4 B. 4或6 C. 6或8 D. 4或8

查看答案和解析>>

同步練習(xí)冊答案