【題目】中國古代有著輝煌的數(shù)學(xué)成就,《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國古代數(shù)學(xué)的重要文獻.
(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為 ;
(2)某中學(xué)擬從這4部數(shù)學(xué)名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.
【答案】(1);(2).
【解析】
(1)根據(jù)概率的性質(zhì)即可得到.
(2)根據(jù)題意列出所能產(chǎn)生的全部結(jié)果再進行計算或者通過樹狀圖的形式將所可能表示出來進行計算即可.
解:(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為.
故答案為;
(2)將四部名著《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》分別記為A,B,C,D,記恰好選中《九章算術(shù)》和《孫子算經(jīng)》為事件M.
方法一:用列表法列舉出從4部名著中選擇2部所能產(chǎn)生的全部結(jié)果:
第1部 第2部 | A | B | C | D |
A | BA | CA | DA | |
B | AB | CB | DB | |
C | AC | BC | DC | |
D | AD | BD | CD |
由表中可以看出,所有可能的結(jié)果有12種,并且這12種結(jié)果出現(xiàn)的可能性相等,
所有可能的結(jié)果中,滿足事件M的結(jié)果有2種,即DB,BD,
∴P(M)==.
方法二:根據(jù)題意可以畫出如下的樹狀圖:
由樹狀圖可以看出,所有可能的結(jié)果有12種,并且這12種結(jié)果出現(xiàn)的可能性相等,
所有可能的結(jié)果中,滿足事件M的結(jié)果有2種,即BD,DB,
∴P(M)==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年5月的第二周為“職業(yè)教育活動周”,今年我省開展了以“弘揚工匠精神,打造技能強國”為主題的系列活動.活動期間某職業(yè)中學(xué)組織全校師生并邀請學(xué)生家長和社區(qū)居民參加“職教體驗觀摩”活動,相關(guān)職業(yè)技術(shù)人員進行了現(xiàn)場演示,活動后該校教務(wù)處隨機抽取了部分學(xué)生進行調(diào)查:“你最感興趣的一種職業(yè)技能是什么?”并對此進行了統(tǒng)計,繪制了統(tǒng)計圖(均不完整).請解答以下問題:
(1)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;
(2)若該校共有1800名學(xué)生,請估計該校對“工業(yè)設(shè)計”最感興趣的學(xué)生有多少人?
(3)要從這些被調(diào)查的學(xué)生中,隨機抽取一人進行訪談,那么正好抽到對“機電維修”最感興趣的學(xué)生的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線l1經(jīng)過點(0,4),l2經(jīng)過(3,2),且l1與l2關(guān)于x軸對稱,則l1與l2的交點坐標(biāo)為
A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師布置了這樣一個問題:如果α,β都為銳角,且tanα=,tanβ=.求α+β的度數(shù).甲、乙兩位同學(xué)想利用正方形網(wǎng)格構(gòu)圖來解決問題.他們分別設(shè)計了圖1和圖2.
(1)請你分別利用圖1,圖2求出α+β的度數(shù),并說明理由;
(2)請參考以上思考問題的方法,選擇一種方法解決下面問題:
如果α,β都為銳角,當(dāng)tanα=5,tanβ=時,在圖3的正方形網(wǎng)格中,利用已作出的銳角α,畫出∠MON,使得∠MON=α-β.求出α-β的度數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4cm,點C為線段AB上一動點,過點C作AB的垂線交⊙O于點D,E,連結(jié)AD,AE.設(shè)AC的長為xcm,△ADE的面積為ycm2.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小東的探究過程,請補充完整:
(1)確定自變量x的取值范圍是 ;
(2)通過取點、畫圖、測量、分析,得到了y與x的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
y/cm2 | 0 | 0.7 | 1.7 | 2.9 |
| 4.8 | 5.2 | 4.6 | 0 |
(3)如圖,建立平面直角坐標(biāo)系xOy,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△ADE的面積為4cm2時,AC的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC的中點,四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點O,四邊形ADCE的面積為16,CD=4,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.
(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B.下面結(jié)論:
①PA與PB始終相等;②△OBP與△OAP的面積始終相等;
③四邊形PAOB的面積不變;④PABD=PBAC.
其中一定正確的是_____(把你認為正確結(jié)論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com