分析 延長FD到G使DG=BE,連接AG,如圖,先證明△ABE≌△ADG得到AE=AG,∠BAE=∠GAD,再證明△AEF≌△AGF得到∠EAF=∠FAG=55°,然后利用∠BAE=∠GAD得到∠BAD=∠EAG=2∠EAF=110°.
解答 解:延長FD到G使DG=BE,連接AG,如圖,
∵∠B+∠D=180°,∠ADG+∠D=180°,
∴∠B=∠ADG,
在△ABE和△ADG
$\left\{\begin{array}{l}{AB=AD}\\{∠B=∠ADG}\\{BE=DG}\end{array}\right.$,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠GAD,
∵EF=BE+FD,
∴EF=DG+DF=GF,
在△AEF和△AGF中
$\left\{\begin{array}{l}{AE=AG}\\{AF=AF}\\{EF=GF}\end{array}\right.$,
∴△AEF≌△AGF,
∴∠EAF=∠FAG=55°,
∵∠BAE=∠GAD,
∴∠BAD=∠EAG=2∠EAF=110°.
故答案為110°.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì):全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時(shí),關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.解決本題的關(guān)鍵是構(gòu)建△ABE≌△ADG,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com