【題目】如圖,將的長方形紙片沿過項點的直線為折痕折疊時,點與邊上的點重合,試分別求出的長.

【答案】DQ=6;PQ=5.

【解析】

由折疊的性質(zhì)可知△ABPAQP,根據(jù)全等三角形的性質(zhì)可知AB=AQ=10,利用勾股定理即可求出線段DQ的長度;由DQ=6,得出CQ=DC-DQ=4,設(shè)PQ=x,則PB=PQ=x,所以CP=BC-BP=8-x,利用勾股定理可建立關(guān)于x的方程,解方程求出x的值即可.

解:由折疊的性質(zhì)可知△ABPAQP,

AB=AQ=10

∵四邊形ABCD是矩形,

∴∠D=90°,

AD=8cm,

∴線段DQ的長度是6cm;

由(1)可知DQ=6

CQ=DC-DQ=4,

設(shè)PQ=x,則PB=PQ=x

CP=BC-BP=8-x,

x2=42+8-x2,

解得:x=5

∴線段PQ的長度是5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=的圖象與直線y=﹣x+b都經(jīng)過點A(1,4),且該直線與x軸的交點為B.

(1)求反比例函數(shù)和直線的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點E在正方形ABCD的邊AB上,以BE為邊向正方形ABCD外部作正方形BEFG,連接DFM、N分別是DC、DF的中點,連接MN.AB=7,BE=5,則MN=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于AB兩點,與y軸交于點C,已知A﹣10),C0,3

1)求該拋物線的表達(dá)式;

2)求BC的解析式;

3)點M是對稱軸右側(cè)點B左側(cè)的拋物線上一個動點,當(dāng)點M運動到什么位置時,BCM的面積最大?求BCM面積的最大值及此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,旋轉(zhuǎn)后能與重合.

1)旋轉(zhuǎn)中心是哪一點?

2)旋轉(zhuǎn)角度是多少度?

3)連結(jié)后,是什么三角形?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=10°,點POB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……

請按照上面的要求繼續(xù)操作并探究:

P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn若之后就不能再畫出符合要求點Pn+1了,則n=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市對今年元旦期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)該超市元旦期間共銷售   個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應(yīng)的扇形圓心角是   度;

2)補(bǔ)全條形統(tǒng)計圖;

3)如果該超市的另一分店在元旦期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊ABCAB上的一點,且ADDB12,現(xiàn)將ABC折疊,使點CD重合,折痕為EF,點E、F分別在ACBC上,則CECF的值為(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,DBC邊的中點,點E與點D關(guān)于AB對稱,連接AE、BE,分別延長AE、CB交于點F,若∠F48°,則∠C的度數(shù)是(  )

A. 21°B. 52°C. 69°D. 74°

查看答案和解析>>

同步練習(xí)冊答案