【題目】如圖,已知二次函數(shù)的圖象過A2,0),B0-1)和C4,5)三點。

1)求二次函數(shù)的解析式;

2)設(shè)二次函數(shù)的圖象與軸的另一個交點為D,求點D的坐標;

3)在同一坐標系中畫出直線,并寫出當在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值。

【答案1)二次函數(shù)的解析式為

2)點D的坐標為(-1,0

3X的取值范圍為了-1<x<4

【解析】

試題(1)根據(jù)二次函數(shù)y=ax2+bx+c的圖象過A(2,0),B(0,1)和C(4,5)三點,代入得出關(guān)于a,b,c的三元一次方程組,求得a,b,c,從而得出二次函數(shù)的解析式;

(2)令y=0,解一元二次方程,求得x的值,從而得出與x軸的另一個交點坐標;

(3)畫出圖象,再根據(jù)圖象直接得出答案.

試題解析:(1函數(shù)圖象過點A2,0)、B(0,1)C4,5)三點

二次函數(shù)的解析式為

2)當Y=0

x1=2,x2=-1

D的坐標為(-1,0

3)畫圖正確

X的取值范圍為了-1<x<4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,ACB=90°,AC=5,BC=12.在直線AC、BC上分別取一點MN,使得△AMNABN,則CN=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,以AB為直徑的OBC于點D,點EAC的延長線上,且CBE=BAC

(1)求證:BEO的切線;

(2)若ABC=65°,AB=6,求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.

(1)求從袋中摸出一個球是黃球的概率;

(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,以B為圓心,BC長為半徑畫弧,分別交AC,ABD,E,連接BD,DE,若∠A=30°,AB=AC,則∠BDE的度數(shù)為( ).

A.52.5°B.60°C.67.5°D.75°

查看答案和解析>>

同步練習(xí)冊答案