【題目】如圖,AB為⊙O的直徑,AD與⊙O相切于一點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.
⑴求證:BC為⊙O的切線;
⑵若AB=2,AD=2,求線段BC的長.
【答案】
【解析】
試題(1)因?yàn)?/span>BC經(jīng)過圓的半徑的外端,只要證明AB⊥BC即可.連接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可證明BC為⊙O的切線.
(2)作DF⊥BC于點(diǎn)F,構(gòu)造Rt△DFC,利用勾股定理解答即可.
試題解析:(1)證明:連接OE、OC.
∵CB=CE,OB=OE,OC=OC,
∴△OBC≌△OEC.
∴∠OBC=∠OEC.
又∵DE與⊙O相切于點(diǎn)E,
∴∠OEC=90°.
∴∠OBC=90°.
∴BC為⊙O的切線.
(2)解:過點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形,BF=AD=2,DF=AB=2.
∵AD、DC、BC分別切⊙O于點(diǎn)A、E、B,
∴DA=DE,CE=CB.
設(shè)BC為x,則CF=x﹣2,DC=x+2.
在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.
∴BC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60度.如果這時(shí)氣球的高度CD為90米.且點(diǎn)A、D、B在同一直線上,求建筑物A、B間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點(diǎn)P在矩形ABCD的內(nèi)部,點(diǎn)E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中A點(diǎn)的坐標(biāo)為(8,) ,AB⊥軸于點(diǎn)B, sin∠OAB =,反比例函數(shù)的圖象的一支經(jīng)過AO的中點(diǎn)C,且與AB交于點(diǎn)D.
(1)求反比例函數(shù)解析式;
(2)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是
A. “打開電視機(jī),正在播NBA籃球賽”是必然事件
B. “擲一枚硬幣正面朝上的概率是”表示毎拋擲硬幣2次就必有1次反面朝上
C. 一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D. 甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,矩形ABCD的頂點(diǎn)A,D分別在的邊PM,PN上,頂點(diǎn)B、C在的邊MN上且.
請?jiān)趫D1中在線段AB的左側(cè)畫一個(gè)矩形EGBF∽矩形ABCD,使得點(diǎn)E,點(diǎn)G,點(diǎn)F分別在線段AM、AB、MB上保留必要的痕跡,并作簡單的說明
若矩形ABCD的邊,,請計(jì)算中矩形EGBF的邊長EF的長度.
若矩形ABCD的邊,,則中矩形EGBF的邊長EF的長度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查學(xué)生的興趣愛好,抽查了部分學(xué)生,并制作了如下表格與條形統(tǒng)計(jì)圖:
頻數(shù) | 頻率 | |
體育 | 40 | 0.4 |
科技 | 25 | a |
藝術(shù) | b | 0.15 |
其它 | 20 | 0.2 |
請根據(jù)上圖完成下面題目:
(1)總?cè)藬?shù)為 人,a= ,b= .
(2)請你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若全校有600人,請你估算一下全校喜歡藝術(shù)類學(xué)生的人數(shù)有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com