【題目】如圖1,在中,.動點(diǎn)從的頂點(diǎn)出發(fā),以的速度沿勻速運(yùn)動回到點(diǎn).圖2是點(diǎn)運(yùn)動過程中,線段的長度隨時間變化的圖象.其中點(diǎn)為曲線部分的最低點(diǎn).
請從下面A、B兩題中任選一作答,我選擇________題.
A.的面積是______,B.圖2中的值是______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動到點(diǎn)C停止,同時點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA﹣AC方向運(yùn)動到點(diǎn)C停止,若△BPQ的面積為y(cm2),運(yùn)動時間為x(s),則下列最能反映y與x之間函數(shù)關(guān)系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,李老師出示了如下的題目:如圖1,在等邊中,點(diǎn)在上,點(diǎn)在的延長線上,且,試確定線段與的大小關(guān)系,并說明理由,
(1)小敏與同桌小聰探究解答的思路如下:
①特殊情況,探索結(jié)論,
當(dāng)點(diǎn)為的中點(diǎn)時,如圖2,確定線段與的大小關(guān)系,請你直接寫出結(jié)論:______.(填>,<或=)
②特例啟發(fā),解答題目,
解:題目中,與的大小關(guān)系是:______.(填>,<或=)
理由如下:如圖3,過點(diǎn)作,交于點(diǎn),(請你補(bǔ)充完成解答過程)
(2)拓展結(jié)論,設(shè)計(jì)新題,
同學(xué)小敏解答后,提出了新的問題:在等邊中,點(diǎn)在直線上,點(diǎn)在直線上,且,已知的邊長為,求的長?(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,OA=2cm,OA⊥OB,AC交OB于D點(diǎn),AD=2CD.
(1)求∠BOC的度數(shù);
(2)求線段BD、線段CD和 BC圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,F(xiàn)B的延長線交于點(diǎn)P,且PC=PB.
(1)求證:BG∥CD;
(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊上的中線,點(diǎn)D,E分別在邊AC和BC上,DB=DE,DE與BM相交于點(diǎn)N,EF⊥AC于點(diǎn)F,以下結(jié)論:
①∠DBM=∠CDE;②S△BDE<S四邊形BMFE;③CD·EN=BN·BD;④AC=2DF.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com