【題目】數(shù)學(xué)課上,李老師出示了如下的題目:如圖1,在等邊中,點上,點的延長線上,且,試確定線段的大小關(guān)系,并說明理由,

1)小敏與同桌小聰探究解答的思路如下:

①特殊情況,探索結(jié)論,

當(dāng)點的中點時,如圖2,確定線段的大小關(guān)系,請你直接寫出結(jié)論:______(>,<=)

②特例啟發(fā),解答題目,

解:題目中,的大小關(guān)系是:______(>,<=)

理由如下:如圖3,過點,交于點,(請你補充完成解答過程)

2)拓展結(jié)論,設(shè)計新題,

同學(xué)小敏解答后,提出了新的問題:在等邊中,點在直線上,點在直線上,且,已知的邊長為,求的長?(請直接寫出結(jié)果)

【答案】1)①AE=DB;②=;理由見解析;(224

【解析】

1)①根據(jù)等邊三角形性質(zhì)和等腰三角形的性質(zhì)求出=求出DB=BE,進(jìn)而得出AE=DB即可;

②根據(jù)題意結(jié)合平行線性質(zhì)利用全等三角形的判定證得BDE≌△FEC,求出AE=EF進(jìn)而得到AE=DB即可;

2)根據(jù)題意分兩種情況討論,一種是點在線段上另一種是點在線段的反向延長線上進(jìn)行分析即可.

解:(1)①∵為等邊三角形,點的中點,

, ,

,

,得出,即有,

,

AE=DB.

AE=DB,理由如下:

EF//BC,交ABE,ACF,

EF//BC

∴∠AEF=ABC=60°,∠AFE=ACF=60°,∠1=2

∴∠4=5=120°,

EC=ED

∴∠2=3,

∴∠1=3

BDEFEC中,

∴△BDE≌△FEC,

DB=EF,

∵∠A=AEF=AFE=60°,

∴△AEF為等邊三角形,

AE=EF,

AE=DB

(2)第一種情況:

假設(shè)點在線段上,并作EF//BC,交ABE,ACF,如圖所示:

根據(jù)②可知AE=DB

∵在等邊中,的邊長為,

AE=DB=1,

;

第二種情況:

假設(shè)點在線段的反向延長線上,如圖所示:

根據(jù)②的結(jié)論可知AE=DB,

∵在等邊中,的邊長為,

;

綜上所述CD的長為24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用同角的余角相等可以幫助我們得到相等的角,這個規(guī)律在全等三角形的判定中有著廣泛的運用.

1)如圖①,,三點共線,于點于點,,且.若,求的長.

2)如圖②,在平面直角坐標(biāo)系中,為等腰直角三角形,直角頂點的坐標(biāo)為,點的坐標(biāo)為.求直線軸的交點坐標(biāo).

3)如圖③,,平分,若點坐標(biāo)為,點坐標(biāo)為.則 .(只需寫出結(jié)果,用含,的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,點的中點,,平分,下列結(jié)論:

四個結(jié)論中成立的是(

A.①②④B.①②③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.

(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對圖(1)中星形截去一個角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示.

1)若△ABC內(nèi)有一點Pa,b)隨著△ABC平移后到了點P′(a+4b1),直接寫出A點平移后對應(yīng)點A′的坐標(biāo).

2)直接作出△ABC關(guān)于y軸對稱的△ABC′(其中A′、B′、C′分別是A、BC的對應(yīng)點)

3)求四邊形ABCC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在Rt△ABC中,∠A=90°,=1,點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接 CD.

(1)①求的值;②求∠ACD的度數(shù).

(2)拓展探究

如圖 2,在Rt△ABC中,∠A=90°,=k.點P是邊BC上一動點(不與點B重合),∠PAD=90°,∠APD=∠B,連接CD,請判斷∠ACD與∠B 的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是邊BC上一動點(不與點B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若 PA=5,請直接寫出CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,.動點的頂點出發(fā),以的速度沿勻速運動回到點.圖2是點運動過程中,線段的長度隨時間變化的圖象.其中點為曲線部分的最低點.

請從下面A、B兩題中任選一作答,我選擇________.

A的面積是______,B.圖2的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標(biāo)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OACB的頂點O是坐標(biāo)原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當(dāng)△CDE的周長最小時,則點E的坐標(biāo)____________

查看答案和解析>>

同步練習(xí)冊答案