【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C(0,),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側(cè).
(1)求a的值及點A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點P位于第二象限時,設(shè)PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標(biāo);若不能,請說明理由.
【答案】(1),A(-4,0),B(2,0);(2)y=2x+2或;(3)存在,N(-, 1).
【解析】
試題分析:(1)把點C代入拋物線解析式即可求出a,令y=0,列方程即可求出點A、B坐標(biāo).
(2)先求出四邊形ABCD面積,分兩種情形:①當(dāng)直線l邊AD相交與點M1時,根據(jù)S△AHM1=×10=3,求出點M1坐標(biāo)即可解決問題.②當(dāng)直線l邊BC相交與點M2時,同理可得點M2坐標(biāo).
(3)設(shè)P(,)、Q(,)且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,得到b=k,利用方程組求出點M坐標(biāo),求出直線DN解析式,再利用方程組求出點N坐標(biāo),列出方程求出k,即可解決問題.
試題解析:(1)∵拋物線與y軸交于點C(0,),∴a﹣3=,解得:,∴
當(dāng)y=0時,有,∴ ,,∴A(﹣4,0),B(2,0).
(2)∵A(﹣4,0),B(2,0),C(0,),D(﹣1,﹣3)
∴S四邊形ABCD=S△ADH+S梯形OCDH+S△BOC==10.
從面積分析知,直線l只能與邊AD或BC相交,所以有兩種情況:
①當(dāng)直線l邊AD相交與點M1時,則S△AHM1=×10=3,∴×3×(-yM1)=3,∴yM1=-2,點M1(﹣2,﹣2),過點H(﹣1,0)和M1(﹣2,﹣2)的直線l的解析式為y=2x+2.
②當(dāng)直線l邊BC相交與點M2時,同理可得點M2(,﹣2),過點H(﹣1,0)和M2(,﹣2)的直線l的解析式為.
綜上所述:直線l的函數(shù)表達(dá)式為y=2x+2或.
(3)設(shè)P(,)、Q(,)且過點H(﹣1,0)的直線PQ的解析式為y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.
由,∴,∴,,∵點M是線段PQ的中點,∴由中點坐標(biāo)公式的點M(,).
假設(shè)存在這樣的N點如圖,直線DN∥PQ,設(shè)直線DN的解析式為y=kx+k﹣3,由,解得:, , ∴N(,).
∵四邊形DMPN是菱形,∴DN=DM,∴,整理得:,,∵ >0,∴,解得,∵k<0,∴,∴P(-,6),M(-,2),N(-, 1),∴PM=DN=,∵PM∥DN,∴四邊形DMPN是平行四邊形,∵DM=DN,∴四邊形DMPN為菱形,∴以DP為對角線的四邊形DMPN能成為菱形,此時點N的坐標(biāo)為(﹣,1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組7名同學(xué)積極捐出自己的零花錢支援地震災(zāi)區(qū),他們捐款的數(shù)額分別是(單位:元):50,20,50,30,50,25,135.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( ).
A.50,20B.50,30C.50,50D.135,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年中秋小長假長沙縣的旅游收入約為1900萬,將1900萬用科學(xué)記數(shù)法表示應(yīng)為( 。
A. 19×104 B. 1.9×104 C. 1.9×107 D. 0.19×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
有一種記分法:80分以上的,如88分記作+8分,某們學(xué)生得74分,則應(yīng)記作( ).
A.+74分 B.+6分 C.-6分 D.-14分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=(2﹣m)x﹣2的函數(shù)值y隨x的增大而減小,則m的取值范圍是( )
A.m<0
B.m>0
C.m<2
D.m>2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連結(jié)AD、AG。
(1)求證:AD=AG
(2)AD與AG的位置關(guān)系如何,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二屆“紅色日記”征文大賽于2020年1月12日正式啟動,征文內(nèi)容分為兩部分:“不忘初心”和“紅色傳承”.其中五位評委給參賽者小亮的征文評分分別為:88、92、90、93、88,則這組數(shù)據(jù)的眾數(shù)是 ( )
A.88B.90C.92D.93
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com