【題目】如圖,在△ABC中,ABBC,以AB為直徑的⊙OBC于點D,交AC于點F,過點CCEAB,且∠CAD=∠CAE

1)求證:AE是⊙O的切線;

2)若AB8,AC6,求CE的長.

【答案】1)詳見解析;(2

【解析】

1)利用平行線的性質(zhì),圓的性質(zhì)和等腰三角形的性質(zhì),證明△AEC和△ADC全等即可得到結(jié)論;,

2)設(shè)AEADx,CECDy,利用勾股定理列出關(guān)于xy的等式,即可求出AE的長.

1)證明:∵ABBC

∴∠BAC=∠BCA,

CEAB,

∴∠BAC=∠ACE,

∴∠ACB=∠ACE,

∴∠CAD=∠CAE

ACAC,

∴△ADC≌△AECASA),

∴∠ADC=∠E,

AB是⊙O的直徑,

∴∠ADB=∠ADC90°

∴∠E90°,

ABCE,

∴∠BAE+E180°,

∴∠BAE90°,

AE是⊙O的切線;

2)解:設(shè)AEADx,CECDy,

BD=(8y),

∵△AEC和△ADB為直角三角形,

AE2+CE2AC2,AD2+BD2AB2,

AB8,AC6,AEADx,CECDyBD=(8y)代入,

x2+y262x2+8y282,

解得:y

CE的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點軸正半軸上的一動點,拋物線(是常數(shù),且過點,與軸交于兩點,點在點左側(cè),連接,以為邊做等邊三角形,點與點在直線兩側(cè).

1)求B、C的坐標(biāo);

2)當(dāng)軸時,求拋物線的函數(shù)表達(dá)式;

3)①求動點所成的圖像的函數(shù)表達(dá)式;

②連接,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為配合一帶一路國家倡議,某鐵路貨運(yùn)集裝箱物流園區(qū)正式啟動了2期擴(kuò)建工程一項地基基礎(chǔ)加固處理工程由2、8兩個工程公司承擔(dān)建設(shè),己知2工程公司單獨建設(shè)完成此項工程需要180工程公司單獨施工天后,工程公司參與合作,兩工程公司又共同施工天后完成了此項工程.

(1)求工程公司單獨建設(shè)完成此項工程需要多少天?

(2)由于受工程建設(shè)工期的限制,物流園區(qū)管委會決定將此項工程劃包成兩部分,要求兩工程公司同時開工,工程公司建設(shè)其中一部分用了天完成,工程公司建設(shè)另一部分用了天完成,其中均為正整數(shù),且,,求、兩個工程公司各施工建設(shè)了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐是以問題為中心,以活動為平臺,以解決某一實際的數(shù)學(xué)問題為目標(biāo),綜合應(yīng)用知識和方法解決問題,它是對數(shù)學(xué)知識的延伸和發(fā)展,是對理解、運(yùn)用數(shù)學(xué)基礎(chǔ)知識和基本技能的升華過程.請同學(xué)們運(yùn)用你所學(xué)的數(shù)學(xué)知識來研究和解決以下問題吧.

1)探究:已知是平面上一個運(yùn)動的點,若,,則當(dāng)點位于 時,線段的長最小,最小值為 ;若,,則當(dāng)點位于 時,線段的長最小,最小值為 ;

2)應(yīng)用:已知是一運(yùn)動的點,,,如圖①所示,分別以為邊作等腰直角三角形和等腰直角三角形,且,連接

①在圖中找出與相等的線段,并說明理由;

②何時線段可以取得最小值?請直接寫出線段的最小值;

3)拓展:如圖②,在矩形中,,,為矩形對角線的交點,邊上任意一點,連接并延長與邊交于點,現(xiàn)將圖中分別沿翻折,使點與點分別落在矩形內(nèi)的點,處,連接,則的長有最小值嗎?若有,請直接寫出的長的最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點,、分別交軸正半軸于點,交軸負(fù)半軸于點,且,連接

1)若,則_______,此時________

2)求的面積.

3)在線段上取一點使,在上是否存在一點,使得四邊形是平行四邊形,如果存在,請直接寫出點的橫坐標(biāo),如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù) yax2+bx 的圖象與 x 軸交于點 O00)和 B,拋物線的對稱軸是直線 x3.點 A 是拋物線在第一象限上的一個動點, 過點 A ACx 軸,垂足為 CSAOB3SABCAC2OCBC

1)求該二次函數(shù)的解析式;

2)拋物線的對稱軸與 x 軸交于點 M.連接 AM,點 N 是線段 OA 上的一點.當(dāng) AMN=∠AOM 時,求點 N 的坐標(biāo);

3)點 P 是拋物線上的一個動點.點 Q y 軸上的一動點.當(dāng)以 A,B,P,Q 四個點為頂點的四邊形為平行四邊形時,直接寫出點 P 坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C

1)求點A、B的坐標(biāo);

2)設(shè)D為已知拋物線的對稱軸上的任意一點,當(dāng)ACD的面積等于ACB的面積時,求點D的坐標(biāo);

3)若直線l過點E4,0),M為直線l上的動點,當(dāng)以A、B、M為頂點所作的直角三角形有且只有三個時,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于A、B兩點,點P是第二象限圖象上一動點,PMx軸于點MPNy軸于點N,連接MN,在點P的運(yùn)動過程中,線段MN長度的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點,以CD為直徑的O分別交AC,BC于點E,F兩點,過點FFGAB于點G

1)試判斷FGO的位置關(guān)系,并說明理由;

2)若AC=6,CD5,求FG的長.

查看答案和解析>>

同步練習(xí)冊答案