【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E.已知C點(diǎn)的坐標(biāo)是(6,),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
【答案】解:(1)比例函數(shù)的解析式為,一次函數(shù)的解析式;
(2)當(dāng)或時(shí).一次函數(shù)的值大于反比例函數(shù)的值.
【解析】
(1)將C坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,再由DE為3得到D縱坐標(biāo)為3,將y=3代入反比例解析式中求出x的值,即為D的橫坐標(biāo),設(shè)直線(xiàn)解析式為y=kx+b,將D與C的坐標(biāo)代入求出k與b的值,即可確定出一次函數(shù)解析式;
(2)根據(jù)圖象直接得出結(jié)論.
(1)∵點(diǎn)C(6,﹣1)在反比例圖象上,
∴將x=6,y=﹣1代入反比例解析式得:,即,
∴反比例解析式為,
∵點(diǎn)D在反比例函數(shù)圖象上,且DE=3,即D縱坐標(biāo)為3,
將y=3代入反比例解析式得:,即x=﹣2,
∴點(diǎn)D坐標(biāo)為(﹣2,3),
設(shè)直線(xiàn)解析式為,
將C與D坐標(biāo)代入得:,
解得:,
∴一次函數(shù)解析式為;
(2)觀察圖像可知,當(dāng)或時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,則下列結(jié)論:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是( )
A. ①②B. ①③④C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,E是BC中點(diǎn),點(diǎn)O在AB上,以O(shè)B為半徑的⊙O經(jīng)過(guò)點(diǎn)AE上的一點(diǎn)M,分別交AB,BC于點(diǎn)F,G,連BM,此時(shí)∠FBM=∠CBM.
(1)求證:AM是⊙O的切線(xiàn);
(2)當(dāng)BC=6,OB:OA=1:2 時(shí),求,AM,AF圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“安全教育平臺(tái)”是中國(guó)教育學(xué)會(huì)為方便學(xué)長(zhǎng)和學(xué)生參與安全知識(shí)活動(dòng)、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長(zhǎng)和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類(lèi)情形:A.僅學(xué)生自己參與;B.家長(zhǎng)和學(xué)生一起參與;
C.僅家長(zhǎng)自己參與; D.家長(zhǎng)和學(xué)生都未參與.
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算C類(lèi)所對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校2000名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,∠ABC∶∠BAD=1∶2,AC∥BE,CE∥BD.
(1)求∠DBC的度數(shù);
(2)求證:四邊形OBEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(-4,n)、B(2,-6)是一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的兩個(gè)交點(diǎn),直線(xiàn)AB與x軸交于點(diǎn)C。
(1)求兩函數(shù)解析式;(2)求△AOB的面積;
(3)根據(jù)圖象回答:y1<y2時(shí),自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋里裝有3個(gè)小球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外其余都相同.
(1)求摸出1個(gè)小球是白球的概率;
(2)摸出1個(gè)小球,記下顏色后放回,并攪均,再摸出1個(gè)小球.求兩次摸出的小球恰好顏色不同的概率.(要求畫(huà)樹(shù)狀圖或列表)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車(chē)收費(fèi)標(biāo)準(zhǔn):3 km以?xún)?nèi)(含3 km)起步價(jià)為8元,超過(guò)3 km后每1 km加收1.8元.
(1)若小明坐出租車(chē)行駛了6 km,則他應(yīng)付多少元車(chē)費(fèi)?
(2)如果用s表示出租車(chē)行駛的路程,m表示出租車(chē)應(yīng)收的車(chē)費(fèi),請(qǐng)你表示出s與m之間的數(shù)量關(guān)系(s>3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC 中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn) P 從 A 點(diǎn)出發(fā)沿 A-C-B 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 B點(diǎn);點(diǎn) Q 從 B 點(diǎn)出發(fā)沿 B-C-A 路徑向終點(diǎn)運(yùn)動(dòng),終點(diǎn)為 A 點(diǎn),點(diǎn) P 和 Q 分別以 1cm/s 和 xcm / s 的運(yùn)動(dòng)速度 同時(shí)開(kāi)始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過(guò) P 和 Q 作 PE⊥ l 于 E,QF⊥ l 于 F.
(1)如圖,當(dāng) x 2 時(shí),設(shè)點(diǎn) P 運(yùn)動(dòng)時(shí)間為 ts ,當(dāng)點(diǎn) P 在 AC 上,點(diǎn) Q 在 BC 上時(shí):
①用含 t 的式子表示 CP 和 CQ,則 CP= cm,CQ= cm;
②當(dāng) t 2 時(shí),PEC 與QFC 全等嗎?并說(shuō)明理由;
(2)請(qǐng)問(wèn):當(dāng) x 3 時(shí),PEC 與QFC 有沒(méi)有可能全等?若能,直接寫(xiě)出符合條件的 t 的值;若不能,請(qǐng)說(shuō)明 理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com