【題目】在已知線段AB的同側構造∠FAB=∠GBA,并且在射線AF,BG上分別取點D和E,在線段AB上取點C,連結DC和EC.
Ⅰ、如圖,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90兩種情況中任選一種,解決以下問題:
①線段AB的長度是否發(fā)生變化,直接寫出長度或變化范圍;
②∠DCE的度數是否發(fā)生變化,直接寫出度數或變化范圍.
Ⅱ、若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE這兩個三角形全等,請求出:
①線段AB的長度或取值范圍,并說明理由;
②∠DCE的度數或取值范圍,并說明理由.
【答案】選圖一
Ⅰ、①AB=4,不變;
②∠DCE=60.
Ⅱ、當a b時,①AB= a+b; ②∠DCE=α
當a=b時,①AB>0. ②0<∠DCE<180.
選圖二
Ⅰ、① AB=4,不變; ②∠DCE=90.
Ⅱ、當a b時,①AB= a+b; ②∠DCE=α
當a=b時,① AB>0. ②0<∠DCE<180.
【解析】選圖一
Ⅰ、①∵△ADC≌△BCE,
∴BC=AD=3,AC=BE=1,
∴AB=AC+BC=4,
即AB=4,不變;
②∵∠FAB=∠GBA=60,
∴∠ADC+∠ACD=120,
∵△ADC≌△BCE,∴∠ADC=∠BCE,
∴∠BCE+∠ACD=120,
∴∠DCE=60.
Ⅱ、當a b時,則△ADC≌△BCE,
①∵△ADC≌△BCE,∴BC=AD=a,AC=BE=b,則AB= a+b;
②∠DCE=α
當a=b時,則△ADC≌△BEC,∴AC=BC,則
①AB>0. ②0<∠DCE<180.
選圖二
Ⅰ、①∵△ADC≌△BCE,
∴BC=AD=3,AC=BE=1,
∴AB=AC+BC=4,
即AB=4,不變;
②∵∠FAB=∠GBA=90,
∴∠ADC+∠ACD=90,
∵△ADC≌△BCE,∴∠ADC=∠BCE,
∴∠BCE+∠ACD=90,
∴∠DCE=90.
Ⅱ、當a b時,則△ADC≌△BCE,
①∵△ADC≌△BCE,∴BC=AD=a,AC=BE=b,則AB= a+b;
②∵∠FAB=∠GBA=α,
∴∠ADC+∠ACD=180-α,
∵△ADC≌△BCE,∴∠ADC=∠BCE,
∴∠BCE+∠ACD=180-α,
則∠DCE=α;
當a=b時,則△ADC≌△BEC,∴AC=BC,則
①AB>0. ②0<∠DCE<180.
根據△ADC與△BCE各對頂點和各對應邊,且已知∠FAB=∠GBA,所以A與B對應,
在Ⅰ中,根據△ADC≌△BCE,得到對應邊相等,由等量代換得到AB的長,根據對應角相等、三角形內角和與平角的定義可求得∠DCE;
在Ⅱ中要分D與C對應和D與E對應就這兩種情況討論,做法與Ⅰ中類似.
科目:初中數學 來源: 題型:
【題目】(1)已知關于x的方程kx=11﹣2x有整數解,則負整數k的值為 .
(2)若a+b+c=0,且a>b>c,以下結論:
①a>0,c>0;
②關于x的方程ax+b+c=0的解為x=1;
③a2=(b+c)2;
④的值為0或2;
⑤在數軸上點A、B、C表示數a、b、c,若b<0,則線段AB與線段BC的大小關系是AB>BC.
其中正確的結論是 (填寫正確結論的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把幾個數用大括號圍起來,中間用逗號斷開,如:{1,2,﹣3}、{﹣2,7,,19},我們稱之為集合,其中的每個數稱為該集合的元素.如果一個所有元素均為有理數的集合滿足:當有理數a是集合的元素時,2015﹣a也必是這個集合的元素,這樣的集合我們稱為好的集合.例如集合{2015,0}就是一個好的集合.
(1)集合{2015}_____好的集合,集合{﹣1,2016}_____好的集合(兩空均填“是”或“不是”);
(2)若一個好的集合中最大的一個元素為4011,則該集合是否存在最小的元素?如果存在,請直接寫出答案,否則說明理由;
(3)若一個好的集合所有元素之和為整數M,且22161<M<22170,則該集合共有幾個元素?說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)在平面直角坐標系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括O、B),做MN⊥DM,垂足為M,交∠CBE的平分線于點N.
(1)求點C的坐標;
(2)求證:MD=MN;
(3)如圖(2),連接DN交BC于F,連接FM,探究線段MF、CF、OM之間有什么數量關系?并證明你的結論.
圖(1) 圖(2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某長方形廣場的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長方形的長為a米,寬為b米.
(1)請列式表示廣場空地的面積;
(2)若長方形的長為300米,寬為200米,圓形的半徑為10米,計算廣場空地的面積(計算結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別是BC、CD上的動點(不與點B,C,D重合),且∠EAF=45°,AE、AF與對角線BD分別相交于點G、H,連接EH、EF,則下列結論:① △ABH∽△GAH; ② △ABG∽△HEG; ③ AE= AH; ④ EH⊥AF; ⑤ EF=BE+DF
其中正確的有( )個。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸上點A對應的數為,點B對應的數為,且多項式的二次項系數為,常數項為.
(1)直接寫出:;
(2)數軸上點A、B之間有一動點P,若點P對應的數為,試化簡;
(3)若點M從點A出發(fā),以每秒1個單位長度的速度沿數軸向右移動;同時點N從點B出發(fā),沿數軸每秒2個單位長度的速度向左移動,到達A點后立即返回并向右繼續(xù)移動,求經過多少秒后,M、N兩點相距1個單位長度?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動,它從A處出發(fā)看望B、C、D處的其它甲蟲.規(guī)定:向上向右走為正,向下向左走為負,如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4).其中第一數表示左右方向,第二個數表示上下方向,那么圖中
(1)A→C( , ),B→D( , );
(2)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上.如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com