【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點E,連接CE,過點C作CF∥BA交PQ于點F,連接AF.
(1)求證:四邊形AECF是菱形;
(2)若AD=3,AE=5,則求菱形AECF的面積.
【答案】(1)見解析;(2)菱形AECF的面積為24.
【解析】分析:(1)首先利用AAS證明≌,進而得到,于是得打四邊形是平行四邊形,再根據(jù)對角線互相垂直的平行四邊形是菱形即可得到結(jié)論;
(2)首先利用勾股定理求出的長,再利用對角線乘積的一半求出菱形的面積.
詳解:證明:(1)∵CF∥AB,
∴∠DCF=∠DAE,
∵PQ垂直平分AC,
∴CD=AD,
在△CDF和△AED中
∵
∴△CDF≌△AED,
∴AE=CF,
∴四邊形AECF是平行四邊形,
∵PQ垂平分AC,
∴AE=CE,
∴四邊形AECF是菱形;
(2)∵四邊形AECF是菱形,
∴△ADE是直角三角形,
∵AD=3,AE=5,
∴DE=4,
∴AC=2AD=6,EF=2DE=8,
∴菱形AECF的面積為
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,矩形ABCD的面積為10cm2,它的兩條對角線交于點O1,以AB、AO1為鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對角線交于點O2,同樣以AB、AO2為鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABC5O5的面積為( )
A. 1cm2B. 2cm2C. cm2D. cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C. D都在第一象限。
(1)當點A坐標為(4,0)時,求點D的坐標;
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過點A(﹣1,)及原點,交x軸于另一點C(2,0),點D(0,m)是y軸正半軸上一動點,直線AD交拋物線于另一點B.
(1)求拋物線的解析式;
(2)如圖1,連接AO、BO,若△OAB的面積為5,求m的值;
(3)如圖2,作BE⊥x軸于E,連接AC、DE,當D點運動變化時,AC、DE的位置關(guān)系是否變化?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有以下四個命題:
①反比例函數(shù)y=,當x>0時,y隨x的增大而增大;
②拋物線y=x2﹣2x+2與兩坐標軸無交點;
③平分弦的直徑垂直于弦,且平分弦所對的。
④有一個角相等的兩個等腰三角形相似.
其中正確命題的個數(shù)為( 。
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義運算ab=a(1-b),下面給出了關(guān)于這種運算的四個結(jié)論:
①2(-2)=6 ②ab=ba
③若a+b=0,則(aa)+(bb)=2ab ④若ab=0,則a=0.
其中正確結(jié)論的序號是 (填上你認為所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,現(xiàn)有兩條鄉(xiāng)村公路AB、BC,AB長為1200米,BC長為1600,一個人騎摩托車從A處以20m/s的速度勻速沿公路AB、BC向C處行駛;另一人騎自行車從B處以5m/s的速度從B向C行駛,并且兩人同時出發(fā).
(1)求經(jīng)過多少秒摩托車追上自行車?
(2)求兩人均在行駛途中時,經(jīng)過多少秒兩人在行進路線上相距150米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com