分析 (1)由平行四邊形的性質(zhì)得出OA=OC,OB=OD,證出OE=OF,即可得出四邊形AECF是平行四邊形.
(2)求出OA=$\frac{1}{2}$AC=3,由勾股定理求出OB,由矩形的性質(zhì)得出OE=OA=3,即可得出結(jié)果.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵BE=DF,
∴OE=OF,
∴四邊形AECF是平行四邊形.
(2)解:∵OA=$\frac{1}{2}$AC=3,AB⊥AC,
∴OB=$\sqrt{A{B}^{2}+O{A}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
當(dāng)?AECF是矩形時(shí),OE=OA=3,
∴BE=OB-OE=5-3=2.
點(diǎn)評 本題考查了平行四邊形的判定與性質(zhì)、勾股定理、矩形的性質(zhì);熟練掌握平行四邊形的判定與性質(zhì),由勾股定理求出OB是解決問題(2)的關(guān)鍵..
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2$\sqrt{3}$)2=6 | B. | $\sqrt{9}$=±3 | C. | $\sqrt{(-6)^2}$=-6 | D. | $\frac{1}{2+\sqrt{3}}$=2-$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com