分析 (1)要求點C坐標,作CM⊥AO,只要利用全等三角形的性質(zhì)求出OM、CM即可;
(2)延長CE、BA相交于點F.可以證明Rt△ABD≌Rt△ACF,再證明△BCE≌△BFE得到CE=EF,就可以得出結(jié)論;
(3)點Q是否恒在射線BD上,只要證明QM=QN,只要證明△M,HQ≌△NGQ即可.
解答 解:(1)如圖1中,作CM⊥OA垂足為M,
∵∠AOB=∠BAC=90°,
∴∠BAO+∠CAM=90°,∠BAO+∠ABO=90°,
∴∠ABO=∠CAM,
在△ABO和△CAM中,
$\left\{\begin{array}{l}{∠ABO=∠CAM}\\{∠AOB=∠AMC}\\{AB=AC}\end{array}\right.$,
∴△ABO≌△CAM,
∴MC=AO=4,AM=BO=2,MO=AO-AM=2,
∴點C坐標(4,2);
(2)如圖2,延長CE、BA相交于點F,
∵∠EBF+∠F=90°,∠ACF+∠F=90°,
∴∠EBF=∠ACF,
在△ABD和△ACF中$\left\{\begin{array}{l}{∠EBF=∠ACF}\\{AB=AC}\\{∠BAC=∠CAF}\end{array}\right.$,
∴△ABD≌△ACF(ASA),
∴BD=CF,
在△BCE和△BFE中,$\left\{\begin{array}{l}{∠EBF=∠CBE}\\{BE=BE}\\{∠CEB=∠FEB}\end{array}\right.$,
∴△BCE≌△BFE(ASA),
∴CE=EF,
∴CE=$\frac{1}{2}$BD;
(3)結(jié)論:點Q恒在射線BD上,
理由如下:
如圖3中作QE⊥PF,QG⊥FC,QH⊥PC,QM⊥BP,QN⊥BC,垂足分別為E、G、H、M、N.
在四邊形QMBN中,∵∠QMB=∠QNB=90°,
∴∠MQN=180°-∠ABC=135°,
同理可證:∠HQG=135°,
∴∠MQN=∠HQG,
∴∠MQH=∠GQN,
∵PQ平分∠FPC,QF平分∠PFC,QE⊥PF,QH⊥PC,QG⊥FC,
∴QE=QH=QG,∠QPH=$\frac{1}{2}$∠CPF=22.5°,
∵∠PMQ=∠PHQ=90°,
∴M、H、Q、P四點共圓,
∴∠HMP=∠HPQ=22.5°,同理∠QNG=22.5°,
∴∠FMQ=∠QNG,
在△MHQ和△NGQ中,
$\left\{\begin{array}{l}{∠HMQ=∠QNG}\\{∠MQH=∠NQG}\\{QF=QG}\end{array}\right.$,
∴△MHQ≌△NGQ,
∴QM=QN,
∵QM⊥BP,QN⊥BC,
∴BQ平分∠ABC,
∴點Q恒在射線BD上.
點評 本題考查了全等三角形的判定或性質(zhì)、等腰直角三角形的性質(zhì)、坐標與圖形的性質(zhì)、四點共圓等知識,關(guān)鍵是構(gòu)造全等三角形,過點Q向兩邊作垂線是證明角平分線的常用手段.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
選擇意向 | 所占百分比 |
文學鑒賞 | a |
科學實驗 | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
分數(shù) | 7分 | 8分 | 9分 | 10分 |
人數(shù) | 11 | 0 | 8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
26 | 36 | 22 | 22 | 24 | 31 | 21 |
A. | 中位數(shù)是22 | B. | 平均數(shù)是26 | C. | 眾數(shù)是22 | D. | 極差是15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com