如圖,直線y=-x+20與x軸、y軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始在線段AO上以每秒3個(gè)長(zhǎng)度單位的速度向原點(diǎn)O運(yùn)動(dòng).動(dòng)直線EF從x軸開(kāi)始以每秒1個(gè)長(zhǎng)度單位的速度向上平行移動(dòng)(即EF∥x軸),并且分別與y軸、線段AB交于E、F點(diǎn).連接FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1秒時(shí),求梯形OPFE的面積.
(2)t為何值時(shí),梯形OPFE的面積最大,最大面積是多少?
(3)設(shè)t的值分別取t1、t2時(shí)(t1≠t2),所對(duì)應(yīng)的三角形分別為△AF1P1和△AF2P2.試判斷這兩個(gè)三角形是否相似,請(qǐng)證明你的判斷.

【答案】分析:(1)根據(jù)直線的性質(zhì),求出A、B兩點(diǎn)的坐標(biāo),再根據(jù)點(diǎn)A的移動(dòng)規(guī)律,得到AP的長(zhǎng),從而求出OP的長(zhǎng);
又因?yàn)镋F=BE,用OB的長(zhǎng)減去OE的長(zhǎng)即可求出EF的長(zhǎng);從而利用梯形面積公式求出梯形OPFE面積.
(2)設(shè)OE=t,AP=3t,利用梯形面積公式,將梯形面積轉(zhuǎn)化為關(guān)于t的二次函數(shù)表達(dá)式,求二次函數(shù)的最大值即可;
(3)作FD⊥x軸于D,則四邊形OEFD為矩形.求出三角形各邊的長(zhǎng)度表達(dá)式,計(jì)算出對(duì)應(yīng)邊的比值,加上一個(gè)夾角相等,即可得到△AF1P1∽△AF2P2
解答:解:設(shè)梯形OPFE的面積為S.(1)對(duì)于直線y=-x+20,當(dāng)x=0時(shí),y=20;當(dāng)y=0時(shí),x=20,
故A(20,0),B(0,20);
∴OA=OB=20,∠A=∠B=45°.
當(dāng)t=1時(shí),OE=1,AP=3,
∴OP=17,EF=BE=19.
∴S=(OP+EF)•OE=×(17+19)=18.

(2)OE=t,AP=3t,
∴OP=20-3t,EF=BE=20-t.
∴S=(OP+EF)•OE=(20-3t+20-t)•t=-2t2+20t=-2(t-5)2+50.
∴當(dāng)t=5(在0<t<范圍內(nèi))時(shí),S最大值=50.

(3)作FD⊥x軸于D,則四邊形OEFD為矩形.
∴FD=OE=t,AF=FD=t.
又AP=3t,
當(dāng)t=t1時(shí),AF1=t1,AP1=3t1;當(dāng)t=t2時(shí),AF2=t2,AP2=3t2
,又∠A=∠A,
∴△AF1P1∽△AF2P2
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì),同時(shí)結(jié)合了動(dòng)點(diǎn)問(wèn)題和二次函數(shù)的最值,綜合性較強(qiáng),是一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點(diǎn)A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,直線AB、CD相交于點(diǎn)E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點(diǎn),P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為點(diǎn)M,交AB于點(diǎn)E,過(guò)點(diǎn)P作y軸的垂線,垂足為點(diǎn)N,交AB于點(diǎn)F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊(cè)答案