【題目】在平面直角坐標系中,點O為坐標原點,直線y=﹣x+3與x軸、y軸相交于B、C兩點,拋物線y=ax2+bx+3經(jīng)過點B,對稱軸為直線x=1.

(1)求a和b的值;

(2)點P是直線BC上方拋物線上任意一點,設(shè)點P的橫坐標為t,PBC的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)P為拋物線上的一點,連接AC,當(dāng)BCP=ACO時,求點P的坐標.

【答案】(1) a=﹣1,b=2;(2) SPBC =﹣t2+t(0t3);(4)P點坐標為(4,﹣5)或(,).

【解析】

試題分析:(1)由直線解析式可求得B、C兩點坐標,結(jié)合對稱軸,可求得a、b;(2)過點P作PEy軸交BC于點D,交x軸于點E,作CFPD于點F,可用t表示出PD的長,則可示得S與t的關(guān)系式;(3)當(dāng)點P在x軸下方時,過點A作AHCP1,利用面積相等可求得AK、CK的比,再利用勾股定理可求得K點的坐標,則可求得直線CK解析式,結(jié)合P1在拋物線上可求得其坐標;當(dāng)點P在x軸上方時,過點B作BMy軸,交CP2延長線于點M,可證明CBK≌△CBM,則可求得M點坐標,可求得直線CM解析式,同理可求得P2點的坐標,則可求得P點坐標.

試題解析(1)直線y=﹣x+3與x軸、y軸相交于B、C兩點,

B(3,0),C(0,3),

9a+3b+3=0,

拋物線對稱軸為直線x=1,

=1,

a=﹣1,b=2;

(2)如圖1,過點P作PEy軸交BC于點D,交x軸于點E,作CFPD于點F,

P(t,﹣t2+2t+3),

D(t,﹣t+3),

點P是直線BC上方,

PD=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,

SPBC=SPCD+SPBD=PDCF+PDBE=PDOB=×3(﹣t2+3t)=﹣t2+t(0t3);

(3)如圖2,當(dāng)BCP1=ACO時,過點A作AHCP1

OA=1,OC=3,

AC= ,

∵∠BCP1=ACO,

∴∠ACH=45°,

AH= ,

SACK=AKOC=CKAH,

設(shè)K=π,CK=3m,OK=m﹣1,

在RtCOK中,OC2+OK2=CK2

32+m﹣1)2=(3m)2,解得m=

K( ,0),

直線CK解析式為y=﹣2x+3,

P1(n,﹣2n+3)

P1在拋物線y=﹣x2+2x+3上,

P1(4,﹣5);

如圖2,BCP2=ACO時,過點B作BMy軸,交CP2延長線于點M,

CBK和CBM中

∴△CBK≌△CBM(ASA),

BK=BM=,

M(3,),

直線CM的解析式為y=﹣x+3,

P2(m,﹣m+3)

P2在拋物線上,

P2),

P點坐標為(4,﹣5)或(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中,裝有4個紅球、2個白球和2個黃球,每個球除顏色外都相同,從中任意摸出一個球,當(dāng)摸到紅球的概率是摸到白球概率的2倍時,需再往袋子里放入________________個紅球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個數(shù)中,最小的是(

A.-2B.-4C.--1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是(
A.b5b5=2b5
B.(an13=a3n1
C.a+2a2=3a3
D.(a﹣b)5(b﹣a)4=(a﹣b)9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長為4cm和8cm,則三角形周長是(
A.12 cm
B.16cm
C.20cm
D.16cm或20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列算式,你發(fā)現(xiàn)了什么規(guī)律?
12= ;12+22= ;12+22+32= ;12+22+32+42= ;…
①根據(jù)你發(fā)現(xiàn)的規(guī)律,計算下面算式的值;12+22+32+42+52=;
②請用一個含n的算式表示這個規(guī)律:12+22+32…+n2=;
③根據(jù)你發(fā)現(xiàn)的規(guī)律,計算下面算式的值:512+522+…+992+1002=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“如果一個數(shù)是整數(shù),那么它是有理數(shù)”這個命題的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中建立直角坐標系,AOB的頂點均在格點上,點O為原點,點A、B的坐標分別是A(3,2)、B(1,3).

(1)將AOB向下平移3個單位后得到A1O1B1,則點B1的坐標為

(2)將AOB繞點O逆時針旋轉(zhuǎn)90°后得到A2OB2,請在圖中作出A2OB2,并求出這時點A2的坐標為 ;

(3)在(2)中的旋轉(zhuǎn)過程中,線段OA掃過的圖形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,把一條拋物線先向上平移3個單位長度,然后繞原點旋轉(zhuǎn)180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( )

A. y=x2 B. y=x+2

C. y=x2 D. y=x+2+

查看答案和解析>>

同步練習(xí)冊答案