【題目】如圖,在△ABC中,AB=AC,D是BA延長線上的一點,點E是AC的中點.
(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法):作∠DAC的平分線AM,連接BE并延長交AM于點F.
(2)試猜想AF與BC有怎樣的關(guān)系.
【答案】(1)見解析;(2)AF∥BC,AF=BC.
【解析】
(1)根據(jù)題意畫出圖形即可;
(2)首先根據(jù)等腰三角形的性質(zhì)與三角形內(nèi)角與外角的性質(zhì)證明∠C=∠FAC,進而可得AF∥BC;然后再證明△AEF≌△CEB,即可得到AF=BC.
解:(1)如圖所示;作∠DAC的平分線AM;
連接BE并延長交AM于點F;
(2)(2)AF∥BC,且AF=BC,
理由如下:∵AB=AC,
∴∠ABC=∠C,
∴∠DAC=∠ABC+∠C=2∠C,
由作圖可得∠DAC=2∠FAC,
∴∠C=∠FAC,
∴AF∥BC,
∵E為AC中點,
∴AE=EC,
在△AEF和△CEB中
,
∴△AEF≌△CEB(ASA).
∴AF=BC.
綜上可知,
AF∥BC,AF=BC.
科目:初中數(shù)學 來源: 題型:
【題目】已知:點、、不在同一條直線上,.
(1)如圖1,當,時,求的度數(shù);
(2)如圖2,、分別為、的平分線所在直線,試探究與的數(shù)量關(guān)系;
(3)如圖3,在(2)的前提下,有,,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某機器零件的橫截面如圖所示,按要求線段AB和DC的延長線相交成直角才算合格,一工人測得∠A=23°,∠D=31°,∠AED=143°,請你幫他判斷該零件是否合格:___.(填“合格”或“不合格”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負半軸和y軸的正半軸上,O為坐標原點,A、B兩點的坐標分別為(,0)、(0,4),拋物線經(jīng)過B點,且頂點在直線上.
【1】(1)求拋物線對應的函數(shù)關(guān)系式;
【2】(2)若△DCE是由△ABO沿x軸向右平移得到的,當四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
【3】(3)若M點是CD所在直線下方該拋物線上的一個動點,過點M作MN平行于y軸交CD于點N.設點M的橫坐標為t,MN的長度為l.求l與t之間的函數(shù)關(guān)系式,并求l取最大值時,點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:△AEF≌△DEC;
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tan∠ABO=,拋物線y=﹣x2+bx+c過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為弧BE的中點,連接AD交OE于點F,若AC=FC
(Ⅰ)求證:AC是⊙O的切線;
(Ⅱ)若BF=5,DF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市中小學生“我的中國夢”讀書活動中,某校對部分學生做了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學生可根據(jù)自己的愛好任選其中一類.學校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請你結(jié)合圖中信息,解答下列問題:
(1)本次共調(diào)查了 名學生;
(2)被調(diào)查的學生中,最喜愛丁類圖書的有 人,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的 %;
(3)在最喜愛丙類學生的圖書的學生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學校共有學生1500人,請你估計該校最喜愛丙類圖書的女生和男生分別有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com