【題目】如圖,在中,已知,,求中各角的度數(shù).
【答案】∠B=∠C=36°,∠CAB=108°
【解析】
由AB=AC,AC=CD,BD=AD得∠B=∠C=∠BAD,∠CAD=∠CDA, 設(shè)∠B=x,由外角性質(zhì)可得:∠CDA=∠BAD+∠B=2x,根據(jù)三角形的內(nèi)角和定理即可求得∠x的值,從而不難求得中各角的度數(shù).
解:∵AB=AC,AC=CD,BD=AD,
∴∠B=∠C=∠BAD,∠CAD=∠CDA,(等邊對等角)
設(shè)∠B=x,則∠CDA=∠BAD+∠B=2x,
從而∠CAD=∠CDA=2x,∠C=x
∴△ADC中,∠CAD+∠CDA+∠C=2x+2x+x=180°
解得x= 36°
∴在△ABC中,∠B=∠C=36°,∠CAB=108°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,切點分別是A、B,直線EF也是⊙O的切線,切點為Q,交PA、PB于點E、F,已知PA=12cm,∠P=40°
(1)求△PEF的周長.
(2)求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當(dāng)點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設(shè)PQ=x,RM=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知的三邊長,,,,,都是整數(shù),且,的最大公約數(shù)為.點和點分別為的重心和內(nèi)心,且.則的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是外一點,,分別和切于,兩點,是上任意一點,過作的切線分別交,于,.
若的周長為,則的長為________;
連接、,若,則的度數(shù)為________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)如圖,已知點B、E、C、F在同一直線上,AB=DE,∠A=∠D,AC∥DF.
求證:(1)△ABC≌△DEF; (2)BE=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB=4,O是AB的中點,直線l經(jīng)過點O,∠1=60°,P點是直線l上一點,當(dāng)△APB為直角三角形時,則BP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC15°,AB,BC2,以AB為直角邊向外作等腰直角△BAD,且∠BAD=90°;以BC為斜邊向外作等腰直角△BEC,連接DE.
(1)按要求補全圖形;
(2)求DE長;
(3)直接寫出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項綠化工程.
(1)該項綠化工程原計劃每天完成多少米2?
(2)該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com