【題目】工人師傅做鋁合金窗框分下面三個步驟進行:

(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖),使AB=CD,EF=GH;

(2)擺放成如圖的四邊形,則這時窗框的形狀是______形,根據(jù)的數(shù)學(xué)原理是:_______________________;

(3)將直角尺靠緊窗框的一個角(如圖),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(如圖),說明窗框合格,這時窗框是_______形,根據(jù)的數(shù)學(xué)原理是:_____________________.

【答案】(2)平行四邊形 兩組對邊分別相等的四邊形是平行四邊形 (3)矩形;有一個角是直角的平行四邊形是矩形

【解析】已知兩組線段相等了,如圖組成的圖形依據(jù)平行四邊形的判定可知是平行四邊形,在調(diào)整過程中,一個角為直角時,根據(jù)矩形的定義可進行判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的頂點都在邊長為1的正方形方格紙的格點上,將向左平移2格,再向上平移4格.

1)在圖中畫出平移后的三角形;

2)在圖中畫出三角形的高、中線;

3)圖中線段的關(guān)系是_____;

4的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2+bx+c與一直線相交于A(-1,0),C(2,3)兩點,與y軸交于點N.其頂點為D.

(1)拋物線及直線AC的函數(shù)關(guān)系式;
(2)設(shè)點M(3,m),求使MN+MD的值最小時m的值;
(3)若拋物線的對稱軸與直線AC相交于點B,E為直線AC上的任意一點,過點E作EF∥BD交拋物線于點F,以B,D,E,F(xiàn)為頂點的四邊形能否為平行四邊形?若能,求點E的坐標;若不能,請說明理由;
(4)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①為北斗七星的位置圖,圖②將北斗七星分別標為A,B,CD,EF,G,將AB,C,DE,F順次首尾連接,若AF恰好經(jīng)過點G,且AFDE,∠B=∠C10°,∠D=∠E105°.

(1)求∠F的度數(shù);

(2)計算∠B-∠CGF的度數(shù)是______;(直接寫出結(jié)果)

(3)連接AD,∠ADE與∠CGF滿足怎樣數(shù)量關(guān)系時,BCAD,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x﹣1.

(1)當(dāng)m=1時,求該不等式的解集;

(2)m取何值時,該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點.

(1)判斷四邊形EFGH是何種特殊的四邊形,并說明你的理由;

(2)要使四邊形EFGH是菱形,四邊形ABCD還應(yīng)滿足的一個條件是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強愛國主義教育,提高思想道德素質(zhì),某中學(xué)決定組織部分班級去山西國民師范舊址革命活動紀念館開展紅色旅游活動,在參加此次活動的師生中,若每位教師帶17名學(xué)生,還剩12名學(xué)生沒人帶;若每位教師帶18名學(xué)生,就有一位教師少帶4名學(xué)生.現(xiàn)有甲、乙兩種大客車,兩種客車的載客量和租金如下表所示.

類別

甲種客車

乙種客車

載客量(人/輛)

30

42

租金(元/輛)

300

420

1)參加此次紅色旅游活動的教師和學(xué)生各有多少人?

2)為了安全,每輛客車上要有2名教師.則怎樣租車可以保證師生均有車坐,而且每輛車上都沒有空座,也不超載,此時租車的費用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是線段DE上一點,∠BAC=90°,AB=ACBDDE,CEDE

1)求證:DE=BD+CE

2)如果是如圖2這個圖形,BD、CE、DE有什么數(shù)量關(guān)系?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90o,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持AD=CE,連接DE、DF、EF

1求證:ADF≌△CEF;

2試證明DFE是等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案