【題目】如圖,在銳角△ABC中,AC=8,△ABC的面積為20,∠BAC的平分線(xiàn)交BC于點(diǎn)D,M,N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是________.
【答案】5
【解析】
根據(jù)AD是∠BAC的平分線(xiàn)確定出點(diǎn)B關(guān)于AD的對(duì)稱(chēng)點(diǎn)B′在AC上,根據(jù)垂線(xiàn)段最短,過(guò)點(diǎn)B′作B′N(xiāo)⊥AB于N交AD于M,根據(jù)軸對(duì)稱(chēng)確定最短路線(xiàn)問(wèn)題,點(diǎn)M即為使BM+MN最小的點(diǎn),B′N(xiāo)=BM+MN,過(guò)點(diǎn)B作BE⊥AC于E,利用三角形的面積求出BE,再根據(jù)等腰三角形兩腰上的高相等可得B′N(xiāo)=BE,從而得解.
∵AD是∠BAC的平分線(xiàn),
∴點(diǎn)B關(guān)于AD的對(duì)稱(chēng)點(diǎn)B′在AC上,過(guò)點(diǎn)B′作B′N(xiāo)⊥AB于N交AD于M,如圖,
由軸對(duì)稱(chēng)確定最短路線(xiàn)問(wèn)題,點(diǎn)M即為使BM+MN最小的點(diǎn),B′N(xiāo)=BM+MN,
過(guò)點(diǎn)B作BE⊥AC于E,
∵AC=8,S△ABC=20,
∴12×8BE=20,
解得BE=5,
∵AD是∠BAC的平分線(xiàn),B′與B關(guān)于AD對(duì)稱(chēng),
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N(xiāo)=BE=5,
即BM+MN的最小值是5.
故答案為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線(xiàn)的部分圖象如圖,則下列說(shuō)法:①對(duì)稱(chēng)軸是直線(xiàn);②當(dāng)時(shí),;③;④方程無(wú)實(shí)數(shù)根,其中正確的有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中.AB=AC.∠BAC=36°.BD是∠ABC的平分線(xiàn),交AC于點(diǎn)D,E是AB的中點(diǎn),連接ED并延長(zhǎng),交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,連接AF.求證:(1)EF⊥AB; (2)△ACF為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從兩名優(yōu)秀選手中選一名參加全市中小學(xué)運(yùn)動(dòng)會(huì)的男子米跑項(xiàng)目,該校預(yù)先對(duì)這兩名選手測(cè)試了次,測(cè)試成績(jī)?nèi)缦卤?/span>
甲的成績(jī)(秒) | ||||||||
乙的成績(jī)(秒) |
為了衡量這兩名選手米跑的水平,你選擇哪些統(tǒng)計(jì)量?請(qǐng)分別求出這些統(tǒng)計(jì)量的值.
你認(rèn)為選派誰(shuí)比較合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)B(0,4)且與x軸及y=x+2的圖象分別交于點(diǎn)C、D,點(diǎn)D的坐標(biāo)為(,n)
(1)則n= ,k= ,b=_______.
(2)若函數(shù)y=kx+b的函數(shù)值大于函數(shù)y=x+2的函數(shù)值,則x的取值范圍是_______.
(3)求四邊形AOCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011?菏澤)如圖為拋物線(xiàn)y=ax2+bx+c的圖象,A、B、C為拋物線(xiàn)與坐標(biāo)軸的交點(diǎn),且OA=OC=1,則下列關(guān)系中正確的是( 。
A. a+b=﹣1 B. a﹣b=﹣1
C. b<2a D. ac<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左則,點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線(xiàn)下方的拋物線(xiàn)上一動(dòng)點(diǎn).
求這個(gè)二次函數(shù)的表達(dá)式;
求出四邊形的面積最大時(shí)的點(diǎn)坐標(biāo)和四邊形的最大面積;
連結(jié)、,在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
在直線(xiàn)找一點(diǎn),使得為等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,埃航客機(jī)失事后,國(guó)家主席親自發(fā)電進(jìn)行慰問(wèn),埃及政府出動(dòng)了多艘艦船和飛機(jī)進(jìn)行搜救,其中一艘潛艇在海面下米的點(diǎn)處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,繼續(xù)沿原方向直線(xiàn)航行米后到達(dá)點(diǎn),在處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,求海底黑匣子點(diǎn)距離海面的深度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的“楊輝三角”告訴了我們二項(xiàng)式乘方展開(kāi)式的系數(shù)規(guī)律,如:第三行的三個(gè)數(shù)(1、2、1)恰好對(duì)應(yīng)著(a+b)2的展開(kāi)式a2+2ab+b2的系數(shù);第四行的四個(gè)數(shù)恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b3的系數(shù),根據(jù)數(shù)表中前五行的數(shù)字所反映的規(guī)律,回答:
(1)圖中第六行括號(hào)里的數(shù)字分別是 ;(請(qǐng)按從左到右的順序填寫(xiě))
(2)(a+b)4= ;
(3)利用上面的規(guī)律計(jì)算求值:()4﹣4×()3+6×()2﹣4×+1.
(4)若(2x﹣1)2018=a1x2018+a2x2017+a3x2016+……+a2017x2+a2018x+a2019,求a1+a2+a3+……+a2017+a2018的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com