分析 先表示得到原式=$\sqrt{2+\sqrt{(\sqrt{5}+\sqrt{1})^{2}}}$+$\frac{\sqrt{5}+\sqrt{3}+2(\sqrt{3}+\sqrt{2})}{(\sqrt{5}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$,再利用分式加法的逆運(yùn)算變形后約分得到原式=$\sqrt{3+\sqrt{5}}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$,然后化簡(jiǎn)后合并即可.
解答 解:原式=$\sqrt{2+\sqrt{(\sqrt{5}+\sqrt{1})^{2}}}$+$\frac{\sqrt{5}+\sqrt{3}+2(\sqrt{3}+\sqrt{2})}{(\sqrt{5}+\sqrt{3})(\sqrt{3}+\sqrt{2})}$
=$\sqrt{3+\sqrt{5}}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$
=$\frac{\sqrt{(\sqrt{5}+1)^{2}}}{\sqrt{2}}$+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{3}$-$\sqrt{2}$
=$\frac{\sqrt{10}}{2}$+$\frac{\sqrt{2}}{2}$-$\sqrt{2}$
=$\frac{\sqrt{10}}{2}$-$\frac{\sqrt{2}}{2}$.
故答案為$\frac{\sqrt{10}}{2}$-$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題考查了二次根式的混合運(yùn)算:先把各二次根式化簡(jiǎn)為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.解決本題的關(guān)鍵是完全公式的熟練運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 2 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 個(gè) | B. | 2個(gè) | C. | 3 個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 表示數(shù)m的點(diǎn)離原點(diǎn)較遠(yuǎn) | B. | 表示數(shù)-m的點(diǎn)距原點(diǎn)較遠(yuǎn) | ||
C. | 一樣遠(yuǎn) | D. | 無(wú)法比較 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com