【題目】(閱讀材料)

性質(zhì):在一個三角形中,各邊和它所對角的正弦的比相等.

即:

利用上述性質(zhì)可以求解如下題目:

中,若,,,求b

解:在中,∵,

(問題解決)利用上述相關(guān)知識解決下列問題:

如圖,甲船以每小時海里的速度向正北方向航行.當(dāng)甲船位于處時,乙船位于甲船的南偏西方向的處,且乙船從處沿北偏東方向勻速直線航行.經(jīng)過20分鐘后,甲船由處航行到處,乙船航行到甲船位置(即處)的南偏西方向的處,此時兩船相距海里,求乙船每小時航行多少海里.

【答案】海里每小時

【解析】

根據(jù)已知,先證是等邊三角形,再結(jié)合正弦定理即可求出,從而可以求出答案.

解:∵,

又∵

是等邊三角形.

中,由正弦定理得

∴乙船的速度為海里每小時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線ACBD交于點O,分別過點C、DCFBD,DFAC,連接BFAC于點E

1)求證:FCE≌△BOE;

2)當(dāng)ADC滿足什么條件時,四邊形OCFD為菱形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+5與反比例函數(shù)y2的圖象交于A(1,m)、B(4,n)兩點.

(1)A、B兩點的坐標(biāo)和反比例函數(shù)的解析式;

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點OA1,將C1繞點A1旋轉(zhuǎn)180°C2,C2x 軸交于另一點A2.請繼續(xù)操作并探究:將C2繞點A2旋轉(zhuǎn)180°C3,與x 軸交于另一點A3;將C3繞點A2旋轉(zhuǎn)180°C4,與x 軸交于另一點A4,這樣依次得到x軸上的點A1A2,A3,,An,及拋物線C1C2,,Cn,.則點A4的坐標(biāo)為 ;Cn的頂點坐標(biāo)為 (n為正整數(shù),用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖像如圖所示,下列結(jié)論正確是( )

A. B. C. D. 有兩個不相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,聯(lián)結(jié),,如果,那么______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=k1x+,且k1k2≠0,自變量x與函數(shù)值y滿足以下表格:

x

……

-4

-3

-2

-1

-

1

2

3

4

……

y

……

-3

-2

-1

0

1

-1

0

1

m

n

……

1)根據(jù)表格直接寫出yx的函數(shù)表達(dá)式及自變量x的取值范圍______

2)補(bǔ)全上面表格:m=______,n=______;在如圖所示的平面直角坐標(biāo)系中,請根據(jù)表格中的數(shù)據(jù)補(bǔ)全y關(guān)于x的函數(shù)圖象;

3)結(jié)合函數(shù)圖象,解決下列問題:

①寫出函數(shù)y的一條性質(zhì):______;

②當(dāng)函數(shù)值y時,x的取值范圍是______;

③當(dāng)函數(shù)值y=-x時,結(jié)合圖象請估算x的值為______(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=2,AC=3DBC的中點,動點EF分別在AB,AC上,分別過點EGADFH,交BC于點G、H,若EFBC,則EF+EG+FH的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD═70°,AB的垂直平分線交對角線AC于點F.垂足為E,連接DF,則∠CDF等于( 。

A.60°B.65°C.70°D.75°

查看答案和解析>>

同步練習(xí)冊答案