蔬菜基地種植某種蔬菜,由市場(chǎng)行情分析可知,1月份到6月份這種蔬菜的市場(chǎng)售價(jià)p(元/千克)與上市時(shí)間x(月份)的關(guān)系為p=-1.5x+12,這種蔬菜每千克的種植成本y(元/千克)與上市時(shí)間x(月份)滿足一個(gè)函數(shù)關(guān)系,這個(gè)函數(shù)的圖象是拋物線一部分,如圖所示.
(1)若圖中拋物線經(jīng)過A、B兩點(diǎn),對(duì)稱軸是直線x=6,寫出它對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)由以上信息分析,哪個(gè)月上市出售這種蔬菜每千克的收益最大?最大值是多少?
(收益=市場(chǎng)售價(jià)-種植成本)
(1)由題意設(shè)y=a(x-6)2+b,
把(4,3)、(2,6)代入y=a(x-6)2+b中,得:
3=a(4-6)2+b
6=a(2-6)2+b
,
解得:
a=
1
4
b=2

故y=
1
4
(x-6)2+2=
1
4
x2-3x+11;
(2)設(shè)收益為M,
則M=p-y=-1.5x+12-(
1
4
x2-3x+11)=-
1
4
x2+
3
2
x+1=-
1
4
(x-3)2+
13
4
,
當(dāng)x=3時(shí),M取最大值
13
4

即3月上市出售這種蔬菜每千克收益最大,最大收益為
13
4
元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一條拋物線y=
1
4
x2+mx+n經(jīng)過點(diǎn)(0,
3
2
)與(4,
3
2
).
(1)求這條拋物線的解析式,并寫出它的頂點(diǎn)坐標(biāo);
(2)現(xiàn)有一半徑為1,圓心P在拋物線上運(yùn)動(dòng)的動(dòng)圓,當(dāng)⊙P與坐標(biāo)軸相切時(shí),求圓心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形OABC中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(4,0)、C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),試確定過O、P、D三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)E是(2)中所確定拋物線的頂點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長(zhǎng)最。壳蟪龃藭r(shí)點(diǎn)P的坐標(biāo)和△PDE的周長(zhǎng);
(4)設(shè)點(diǎn)N是矩形OABC的對(duì)稱中心,是否存在點(diǎn)P,使∠CPN=90°?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線形拱橋,正常水位時(shí)橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標(biāo)系中,求出該拋物線的解析式;
(2)設(shè)正常水位時(shí)橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求水深超過多少米時(shí)就會(huì)影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某飛機(jī)著陸滑行的路程s(米)與時(shí)間t(秒)的關(guān)系式為:s=60t-1.5t2,那么飛機(jī)著陸后滑行______米才能停止.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn)(C在B的左邊).
(1)過A、O、B三點(diǎn)作⊙M,求⊙M的半徑;
(2)點(diǎn)P為弧OAB上的動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何位置時(shí)△OPB的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)及△OPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6厘米,BC=12厘米,點(diǎn)P從點(diǎn)A出發(fā),沿邊AB向點(diǎn)B以1厘米/秒的速度移動(dòng),同時(shí),Q點(diǎn)從B點(diǎn)出發(fā)沿邊BC向點(diǎn)C以2厘米/秒的速度移動(dòng),如果P、Q兩點(diǎn)分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng).據(jù)此解答下列問題:
(1)運(yùn)動(dòng)開始第幾秒后,△PBQ的面積等于8平方厘米;
(2)設(shè)運(yùn)動(dòng)開始后第t秒時(shí),五邊形APQCD的面積為S平方厘米,寫出S與t的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(3)求出S的最小值及t的對(duì)應(yīng)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知某種水果的批發(fā)單價(jià)與批發(fā)量的函數(shù)關(guān)系如圖1所示.
(1)請(qǐng)說明圖中①、②兩段函數(shù)圖象的實(shí)際意義;
(2)寫出批發(fā)該種水果的資金金額w(元)與批發(fā)量m(kg)之間的函數(shù)關(guān)系式;在圖2的坐標(biāo)系中畫出該函數(shù)圖象;指出金額在什么范圍內(nèi),以同樣的資金可以批發(fā)到較多數(shù)量的該種水果;
(3)經(jīng)調(diào)查,某經(jīng)銷商銷售該種水果的日最高銷量與零售價(jià)之間的函數(shù)關(guān)系如圖3所示,該經(jīng)銷商擬每日售出60kg以上該種水果,且當(dāng)日零售價(jià)不變,請(qǐng)你幫助該經(jīng)銷商設(shè)計(jì)進(jìn)貨和銷售的方案,使得當(dāng)日獲得的利潤(rùn)最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-ax2+2ax+b與x軸的一個(gè)交點(diǎn)為A(-1,0),與y軸的正半軸交于點(diǎn)C.
(1)直接寫出拋物線的對(duì)稱軸,及拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)C在以AB為直徑的⊙P上時(shí),求拋物線的解析式;
(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使得以點(diǎn)M和(2)中拋物線上的三點(diǎn)A、B、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案