【題目】已知一個四位自然數(shù)M的千、百、十、個位上的數(shù)字分別是、、、,若,且,則稱自然數(shù)M是“關(guān)聯(lián)數(shù)”,且規(guī)定 .例如5326,因為,所以5326是“關(guān)聯(lián)數(shù)”,且 現(xiàn)已知式子(、、都是整數(shù),,,)的值表示四位自然數(shù),且是“關(guān)聯(lián)數(shù)”,的各位數(shù)字之和是8的倍數(shù).
(1)當(dāng)時,求;
(2)當(dāng)時,求的和.
【答案】(1)3544,(2)-72.
【解析】
(1)依題意當(dāng)時,的千、百、十、個位上的數(shù)字分別是3、、、,
由是“關(guān)聯(lián)數(shù)”得,則的各位數(shù)字之和為,再由是8的倍數(shù)且,,可推出x、y、z的值,即可求出;
(2)由(1)可知,應(yīng)將分開來求解,即當(dāng)時與當(dāng)時,再根據(jù)題意按第一問的思路來解答即可.
解:(1)當(dāng)時,的千、百、十、個位上的數(shù)字分別是3、、、.
∵是“關(guān)聯(lián)數(shù)”,∴,∴.
∴的各位數(shù)字之和為.
由題意,知是8的倍數(shù),且,,,
∴,,.
∴.
(2)當(dāng)時,的千、百、十、個位上的數(shù)字分別是3、、、.
∵是“關(guān)聯(lián)數(shù)”,∴,∴.
∴的各位數(shù)字之和為.
由題意,知是8的倍數(shù),且,,,
∴,,,或,,.
∴,或3562.
∴,.
當(dāng)時,的千、百、十、個位上的數(shù)字分別是3、、、.
∵是“關(guān)聯(lián)數(shù)”,∴,∴.
∴的各位數(shù)字之和為.
由題意,知是8的倍數(shù),且,,,
∴,,,或,,.
∴,或3984.
∴,.
∴.
∴的和是-72.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,E是BC上一點,且AE⊥DE.
(I)求證:△ABE∽△ECD;
(Ⅱ)若AB=4,AE=BC=5,求ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論;
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,猜測MN與BM的數(shù)量關(guān)系,無需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有四個小球,球面上分別標(biāo)有數(shù)字﹣2、0、1、2,它們除數(shù)字不同外沒有任何區(qū)別,每次實驗先攪拌均勻.
(1)從中任取一球,求抽取的數(shù)字為負(fù)數(shù)的概率;
(2)從中任取一球,將球上的數(shù)字記為x(不放回);再任取一球,將球上的數(shù)字記為y,試用畫樹狀圖(或列表法)表示所有可能出現(xiàn)的結(jié)果,并求“x+y>0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+(m﹣1)x+m與y軸交點坐標(biāo)是(0,3).
(1)求出m的值;
(2)求拋物線與x軸的交點;
(3)當(dāng)x取什么值時,y<0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到(0,1),(1,1),(1,0),(2,0),…那么點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b與x軸、y軸交于A、B兩點,與反比例函數(shù)y=相交于C、D兩點,分別過C、D兩點作y軸、x軸的垂線,垂足為E、F,連接CF、DE、EF. 有下列三個結(jié)論:①△CEF與△DEF的面積相等;②△DCE≌△CDF;③AC=BD.其中正確的結(jié)論個數(shù)是( 。
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com