【題目】如圖,,經(jīng)過圓心的線段于點(diǎn),與交于點(diǎn).

(1)如圖1,當(dāng)半徑為,,求弦的長;

(2)如圖2,當(dāng)半徑為 ,,,求弦的長.

【答案】(1)8 (2)

【解析】

(1)連接,根據(jù)垂徑定理求出的長,因?yàn)?/span>,進(jìn)而在中根據(jù)勾股定理求出長,所以求出的長即可;

(2) 連接,過點(diǎn)D于點(diǎn)M,根據(jù)勾股定理和垂徑定理求出,可以證明,進(jìn)而求出的長,根據(jù)所做的輔助線,可得為等腰直角三角形,所以可以求出的長,然后根據(jù),進(jìn)而求出的長;

解:(1) 連接,根據(jù)垂徑定理求出的長,

即:,

,

設(shè),則,

由勾股定理得:

,

即:,

解得:,

;

(2)連接,過點(diǎn)D于點(diǎn)M,如圖所示:

,

中根據(jù)勾股定理可得:

,

,

,

,

中,

,

,

,

,

,

,

,

為等腰直角三角形,

,

代入到中,

解得:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)yk0,x0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)yk0,x0)的圖象上時(shí),則菱形ABCD沿x軸正方向平移的距離(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸交于點(diǎn)。

1)拋物線的頂點(diǎn)坐標(biāo)為_____________,點(diǎn)坐標(biāo)為____________;(用含的代數(shù)式表示);

2)當(dāng)時(shí),拋物線上有一動點(diǎn),設(shè)點(diǎn)橫坐標(biāo)為,且。

①若點(diǎn)軸的距離為2時(shí),求點(diǎn)的坐標(biāo);

②設(shè)拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)縱坐標(biāo)之差為,求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)若點(diǎn),連結(jié),當(dāng)拋物線與線段只有一個(gè)交點(diǎn)時(shí),直接寫出的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖l,四邊形中,,的中點(diǎn),上一動點(diǎn),連接并延長至點(diǎn),使得,連接、、、.

1)四邊形一定是___________(提醒你:填特殊四邊形的名稱);

2)如圖2,若,,,是否存在這樣的點(diǎn),使得四邊形為菱形,若存在,計(jì)算菱形的面積;若不存在,請說明理由.

3)如圖3,若,,),是否存在這樣的點(diǎn),使得四邊形為矩形,若存在,請求出的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,上一點(diǎn),內(nèi)心,,.

(1)求證:的切線;

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB2,PBC邊上與B、C不重合的任意一點(diǎn),DQAP于點(diǎn)Q

1)判斷DAQAPB是否相似,并說明理由.

2)當(dāng)點(diǎn)PBC上移動時(shí),線段DQ也隨之變化,設(shè)PAxDQy,求yx間的函數(shù)關(guān)系式,并求出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中裝有4張卡片.4張卡片的正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外都相同,將卡片攪勻.

(1)從盒子任意抽取一張卡片,恰好抽到標(biāo)有奇數(shù)卡片的概率是: ;

(2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標(biāo)有數(shù)字之和大于4的概率(請用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了“3D打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機(jī)問卷調(diào)査(問卷調(diào)査表如圖所示),將調(diào)査結(jié)果整理后繪制例圖1、圖2兩幅均不完整的統(tǒng)計(jì)圖表.

最受歡迎的校本課程調(diào)查問卷

您好!這是一份關(guān)于您最喜歡的校本課程問卷調(diào)查表,請?jiān)诒砀裰羞x擇一個(gè)(只能選一個(gè))您最喜歡的課程選項(xiàng),在其后空格內(nèi)打“√”,非常感謝您的合作.

選項(xiàng)

校本課程

A

3D打印

B

數(shù)學(xué)史

C

詩歌欣賞

D

陶藝制作

校本課程

頻數(shù)

頻率

A

36

0.45

B

0.25

C

16

b

D

8

合計(jì)

a

1

請您根據(jù)圖表中提供的信息回答下列問題:

1)統(tǒng)計(jì)表中的a   ,b   ;

2D對應(yīng)扇形的圓心角為   度;

3)根據(jù)調(diào)査結(jié)果,請您估計(jì)該校2000名學(xué)生中最喜歡數(shù)學(xué)史校本課程的人數(shù);

4)小明和小亮參加校本課程學(xué)習(xí),若每人從A、BC三門校本課程中隨機(jī)選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長為   

當(dāng)AC=3,BC=4時(shí),AD的長為   ;

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案