【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊ACBC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為   

當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為   ;

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請(qǐng)說(shuō)明理由.

【答案】解:(1。

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似。理由如下:

如答圖3所示,連接CD,與EF交于點(diǎn)Q,

∵CDRt△ABC的中線,∴CD=DB=AB,∴∠DCB=∠B。

由折疊性質(zhì)可知,∠CQF=∠DQF=90°

∴∠DCB+∠CFE=90°。

∵∠B+∠A=90°∴∠CFE=∠A。

∵∠C=∠C∴△CEF∽△CBA。

【解析】

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),△ABC為等腰直角三角形,如答圖1所示,

此時(shí)DAB邊中點(diǎn),AD=AC=。

當(dāng)AC=3,BC=4時(shí),有兩種情況:

I)若CECF=34,如答圖2所示,

∵CECF=ACBC,∴EF∥BC。

由折疊性質(zhì)可知,CD⊥EF,

∴CD⊥AB,即此時(shí)CDAB邊上的高。

Rt△ABC中,AC=3,BC=4,∴BC=5

∴cosA=。∴AD=ACcosA=3×=

II)若CFCE=34,如答圖3所示.

∵△CEF∽△CAB∴∠CEF=∠B。

由折疊性質(zhì)可知,∠CEF+∠ECD=90°。

∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD。

同理可得:∠B=∠FCDCD=BD。∴AD=BD。

此時(shí)AD=AB=×5=

綜上所述,當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為。

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似.可以推出∠CFE=∠A∠C=∠C,從而可以證明兩個(gè)三角形相似。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,經(jīng)過(guò)圓心的線段于點(diǎn),與交于點(diǎn).

(1)如圖1,當(dāng)半徑為,,求弦的長(zhǎng);

(2)如圖2,當(dāng)半徑為 ,,,求弦的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是二次函數(shù)圖象的一部分,在下列結(jié)論中:①;②;③有兩個(gè)相等的實(shí)數(shù)根;④;其中正確的結(jié)論有(  )

A.1個(gè)B.2 個(gè)C.3 個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A作直線EF

1)如圖所示,若AB⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個(gè)條件是(至少說(shuō)出兩種): 或者

2)如圖所示,如果AB是不過(guò)圓心O的弦,且∠CAE=∠B,那么EF⊙O的切線嗎?試證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù),其中

1)若函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,6),求函數(shù)的表達(dá)式;

2)若一次函數(shù)的圖象與的圖象經(jīng)過(guò)x軸上同一點(diǎn),探究實(shí)數(shù)滿足的關(guān)系式;

3)已知點(diǎn)在函數(shù)的圖象上,若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABDC內(nèi)接于半圓OAB為直徑,AD平分∠CAB,ABAC4AD3,作DEAB于點(diǎn)E,則BE的長(zhǎng)為_____,AC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在中,,點(diǎn)D、E分別在邊AC、AB上,連接BD、CE交于點(diǎn),且.

1)求證:.

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線形狀相同,開(kāi)口方向不同,其中拋物線x軸于A,B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),且,拋物線交于點(diǎn)A

求拋物線的函數(shù)表達(dá)式;

當(dāng)x的取值范圍是______時(shí),拋物線上的點(diǎn)的縱坐標(biāo)同時(shí)隨橫坐標(biāo)的增大而增大;

直線軸,分別交x軸,,于點(diǎn)P,Q,當(dāng)時(shí),求線段PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說(shuō)法正確的是( )

A. 該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>

B. 該村人均耕地面積y與總?cè)丝趚成正比例

C. 若該村人均耕地面積為2公頃,則總?cè)丝谟?00人

D. 當(dāng)該村總?cè)丝跒?0人時(shí),人均耕地面積為1公頃

查看答案和解析>>

同步練習(xí)冊(cè)答案