【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1)(x+6251

2x22x2x1

3x2x2

4xx7)=87x

【答案】1x1=﹣6+, x2=﹣6;(2x12+, x22;(3x1, x2;(4x1=﹣8,x27

【解析】

1)根據(jù)直接開方法即可求出答案;

2)根據(jù)配方法即可求出答案;

3)根據(jù)公式法即可求出答案;

4)根據(jù)因式分解法即可求出答案;

解:(1)∵(x+6251,

x+6±

x1=﹣6+, x2=﹣6;

2)∵x22x2x1,

x24x=﹣1,

x24x+43

∴(x223,

x

x12+, x22;

3)原方程化為x2x20,

a1b,c=﹣2

∴△=2+810

x

x1, x2;

4)∵xx7)=87x),

xx7)﹣87x)=0

∴(x+8)(x7)=0

x1=﹣8,x27;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長,墻DE長為9米,現(xiàn)用20米長的籬笆圍成一個矩形花園ABCD,點C在墻DF上,點A在墻DE上,(籬笆只圍ABBC兩邊).

)根據(jù)題意填表;

BCm

1

3

5

7

矩形ABCD面積(m2

   

   

   

   

)能夠圍成面積為100m2的矩形花園嗎?如能說明圍法,如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D是邊BC的中點,DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.

(1)求證:DE=DF;

(2)當(dāng)A=90°時,試判斷四邊形AFDE是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且ODBC,OD與AC交于點E.

(1)若B=70°,求CAD的度數(shù);

(2)若AB=4,AC=3,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+bx+c的對稱軸lx軸于點A

1)若此拋物線經(jīng)過點(1,2),當(dāng)點A的坐標(biāo)為(2,0)時,求此拋物線的解析式;

2)拋物線yx2+bx+cy軸于點B,將該拋物線平移,使其經(jīng)過點A,B,且與x軸交于另一點C.若b22c,b≤1,比較線段OBOC+的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個公共點A

(1)當(dāng)a=時,求點A的坐標(biāo);

(2)過點A的直線y=x+k與二次函數(shù)的圖象相交于另一點B,當(dāng)b≥﹣1時,求點B的橫坐標(biāo)m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A4,3),B9,3),將線段AB向下平移3個得到DC,其中點A與點D對應(yīng),點B與點C對應(yīng).

1)畫出線段DC,并直接寫出點D的坐標(biāo)  ;

2)連接ADBC得到四邊形ABCD繞點D逆時針旋轉(zhuǎn)90°后得到四邊形EFGD,點AE對應(yīng),點B與點F對應(yīng),點C與點G對應(yīng).

①請畫出四邊形EFGD,并直接寫出點F的坐標(biāo) 

②連接DB、DF、BF,ABC的面積是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小紅兩名同學(xué)在學(xué)習(xí)概率時,做擲骰子(質(zhì)地均勻的正方體)試驗。

(1)小穎和小紅在實驗中如果各擲一枚骰子,那么兩枚骰子朝上的點數(shù)之和為多少時的概率最大?試用列表或畫樹狀圖的方法加以說明,并求出其最大概率。

(2)他們在一次實驗中共擲骰子60次,試驗的結(jié)果如下:

①填空:此次實驗中“5點朝上的頻率為______;

②小紅說:根據(jù)實驗,出現(xiàn)5點朝上的概率最大。她的說法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

同步練習(xí)冊答案