【題目】“如果二次函數(shù)的圖象與軸有兩個(gè)公共點(diǎn),那么一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若、(<)是關(guān)于的方程的兩根且<則請用“<”來表示、、、的大小是_________.
【答案】p<a<b<q.
【解析】
依題意畫出函數(shù)y=(x﹣a)(x﹣b)圖象草圖,根據(jù)二次函數(shù)的增減性求解.
依題意,畫出函數(shù)y=(x﹣a)(x﹣b)的圖象,如圖所示.
函數(shù)圖象為拋物線,開口向上,與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)分別為a,b(a<b).
方程2﹣(x﹣a)(x﹣b)=0
轉(zhuǎn)化為(x﹣a)(x﹣b)=2,方程的兩根是拋物線y=(x﹣a)(x﹣b)與直線y=2的兩個(gè)交點(diǎn).
由p<q,可知對稱軸左側(cè)交點(diǎn)橫坐標(biāo)為p,右側(cè)為q.
由拋物線開口向上,則在對稱軸左側(cè),y隨x增大而減少,則有p<a;在對稱軸右側(cè),y隨x增大而增大,則有b<q.
綜上所述:可知p<a<b<q.
故答案為:p<a<b<q.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC平分∠BCD,AB=AD, AE⊥BC于E,AF⊥CD于F
(1)若∠ABE= 50° ,求∠CDA的度數(shù).
(2)若AE=4,BE=2,CD=6,求四邊形AECD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,⊙M經(jīng)過原點(diǎn)O(0,0),點(diǎn)A(,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BD交x軸于點(diǎn)C,且∠COD=∠CBO.
(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;
(2)在線段BD的延長線上尋找一點(diǎn)E,使得直線AE恰好與⊙M相切,求此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是2012年8月份的日歷. 我們?nèi)我膺x擇其中所示的方框部分,將每個(gè)方框部分中4個(gè)位置上的數(shù)交叉相乘,再相減,例如:,,不難發(fā)現(xiàn),結(jié)果都是7.
(1)請你再選擇兩個(gè)類似的部分試一試,看看是否符合這個(gè)規(guī)律;
(2)請你利用整式的運(yùn)算對以上的規(guī)律加以證明.
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則
y1>y2.其中說法正確的是( )
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月少賣10件(每件售價(jià)不能高于65元),設(shè)每件商品的售價(jià)上漲元(為正整數(shù)),每個(gè)月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大月利潤是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰為2 200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( 。
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線:經(jīng)過,兩點(diǎn),且、滿足,過點(diǎn)作軸,交直線:于點(diǎn),連接.
(1)求直線的函數(shù)表達(dá)式;
(2)在直線上是否存在一點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線交直線、于點(diǎn)、,若是等腰直角三角形,請直接寫出符合條件的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張矩形紙片ABCD折疊,使兩個(gè)頂點(diǎn)A、C重合,折痕為FG,若AB=4,BC=8.
求(1)線段BF的長;
(2)判斷△AGF形狀并證明;
(3)求線段GF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com