【題目】“如果二次函數(shù)的圖象與軸有兩個公共點,那么一元二次方程有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若)是關(guān)于的方程的兩根且則請用“<”來表示、、的大小是_________.

【答案】p<a<b<q.

【解析】

依題意畫出函數(shù)y=(xa)(xb)圖象草圖,根據(jù)二次函數(shù)的增減性求解

依題意畫出函數(shù)y=(xa)(xb)的圖象,如圖所示

函數(shù)圖象為拋物線,開口向上x軸兩個交點的橫坐標(biāo)分別為a,bab).

方程2﹣(xa)(xb)=0

轉(zhuǎn)化為(xa)(xb)=2,方程的兩根是拋物線y=(xa)(xb)與直線y=2的兩個交點

pq,可知對稱軸左側(cè)交點橫坐標(biāo)為p,右側(cè)為q

由拋物線開口向上,則在對稱軸左側(cè)yx增大而減少,則有pa;在對稱軸右側(cè),yx增大而增大,則有bq

綜上所述可知pabq

故答案為:pabq

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC平分∠BCDAB=AD, AEBCE,AFCDF

1)若∠ABE= 50° ,求∠CDA的度數(shù).

2)若AE=4,BE=2,CD=6,求四邊形AECD 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,M經(jīng)過原點O(0,0),點A,0)與點B(0,﹣1),點D在劣弧OA上,連接BDx軸于點C,且∠COD=∠CBO

(1)請直接寫出M的直徑,并求證BD平分∠ABO;

(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與M相切,求此時點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日歷上,我們可以發(fā)現(xiàn)其中某些數(shù)滿足一定的規(guī)律,如圖是20128月份的日歷. 我們?nèi)我膺x擇其中所示的方框部分,將每個方框部分中4個位置上的數(shù)交叉相乘,再相減,例如:,,不難發(fā)現(xiàn),結(jié)果都是7.

1)請你再選擇兩個類似的部分試一試,看看是否符合這個規(guī)律;

2)請你利用整式的運算對以上的規(guī)律加以證明.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,其對稱軸為x=﹣1,且過點(﹣3,0).下列說法:①abc0②2a﹣b=0;③4a+2b+c0若(﹣5,y1),(,y2)是拋物線上兩點,則

y1y2.其中說法正確的是( )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10(每件售價不能高于65),設(shè)每件商品的售價上漲(為正整數(shù)),每個月的銷售利潤為元.

(1)的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?

(3)每件商品的售價定為多少元時,每個月的利潤恰為2 200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時,y<0;④方程ax2+bx+c=0(a≠0)有兩個大于﹣1的實數(shù)根.其中正確的結(jié)論有( 。

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線經(jīng)過,兩點,且、滿足,過點軸,交直線于點,連接.

1)求直線的函數(shù)表達(dá)式;

2)在直線上是否存在一點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

(3)點軸上的一個動點,點軸上的一個動點,過點軸的垂線交直線、于點、,若是等腰直角三角形,請直接寫出符合條件的的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙片ABCD折疊,使兩個頂點A、C重合,折痕為FG,若AB4BC8

求(1)線段BF的長;

2)判斷AGF形狀并證明;

3)求線段GF的長.

查看答案和解析>>

同步練習(xí)冊答案