【題目】如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,∠ACB的角平分線分別交AB、BD于M、N兩點(diǎn),若AM=2,則線段ON的長為_____.
【答案】1.
【解析】
作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,再求出AH,MH,MB,CH,CO,然后證明△CON∽△CHM,再利用相似三角形的性質(zhì)可計(jì)算出ON的長.
解:作MH⊥AC于H,如圖,
∵四邊形ABCD為正方形,
∴∠MAH=45°,
∴△AMH為等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,MH⊥AC,MB⊥BC
∴BM=MH=,
∴AB=2+,
∴AC=AB=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴=,即=,
∴ON=1.
故答案為:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是的外接圓,是的直徑,過的中點(diǎn)作的直徑交弦于點(diǎn),連接、、.
(1)如圖1,若點(diǎn)是線段的中點(diǎn),求的度數(shù);
(2)如圖2,在上取一點(diǎn),使,求證:;
(3)如圖3,取的中點(diǎn),連接并延長交于點(diǎn),連接和交于點(diǎn),若,且,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,線段是⊙的直徑,過點(diǎn)作直線交⊙于、兩點(diǎn),過點(diǎn)作的角平分線交⊙于,過作的垂線交于
(1)證明是⊙的切線
(2)證明
(3)若⊙的直徑為10,,求
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過P(2,2),頂點(diǎn)為O(0,0),將該圖象向右平移,當(dāng)它再次經(jīng)過點(diǎn)P時(shí),所得拋物線的函數(shù)表達(dá)式為( 。
A.y=x2B.y=(x﹣2)2C.y=(x﹣4)2D.y=(x﹣2)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明觀察一個(gè)由1×1正方形點(diǎn)陣組成的點(diǎn)陣圖,圖中水平與豎直方向上任意兩個(gè)相鄰點(diǎn)間的距離都是1.他發(fā)現(xiàn)一個(gè)有趣的問題:對(duì)于圖中出現(xiàn)的任意兩條端點(diǎn)在點(diǎn)陣上且互相不垂直的線段,都可以在點(diǎn)陣中找到一點(diǎn)構(gòu)造垂直,進(jìn)而求出交點(diǎn)與垂足之間的數(shù)值.
請(qǐng)回答:
(1)如圖1,A、B、C是點(diǎn)陣中的三個(gè)點(diǎn),請(qǐng)?jiān)邳c(diǎn)陣中找到點(diǎn)D,作出線段CD,使得CD⊥AB;
(2)如圖2,線段AB與CD交于點(diǎn)O,小明在點(diǎn)陣中找到了點(diǎn)E,連接AE.恰好滿足AE⊥CD于E,再作出點(diǎn)陣中的其它線段,就可以構(gòu)造相似三角形,經(jīng)過推理和計(jì)算能夠使問題得到解決.
請(qǐng)你幫小明計(jì)算:OC= OF= ;
參考小明思考問題的方法,解決問題:
(3)如圖3,線段AB與CD交于點(diǎn)O.在點(diǎn)陣中找到點(diǎn)E,連接AE,滿足AE⊥CD于F.計(jì)算: OC= ,OF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)F是BC邊上一點(diǎn),連結(jié)AF,以AF為對(duì)角線作正方形AEFG,邊FG與正方形ABCD的對(duì)角線AC相交于點(diǎn)H,連結(jié)DG.
(1)填空:若∠BAF=18°,則∠DAG=______°.
(2)證明:△AFC∽△AGD;
(3)若=,請(qǐng)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC中,OA=4,AB=3,點(diǎn)D在邊BC上,且CD=3DB,點(diǎn)E是邊OA上一點(diǎn),連接DE,將四邊形ABDE沿DE折疊,若點(diǎn)A的對(duì)稱點(diǎn)A′恰好落在邊OC上,則OE的長為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一條弧經(jīng)過一個(gè)多邊形相鄰兩邊中點(diǎn),并且該弧上所有點(diǎn)都在該多邊形的內(nèi)部或邊上,則稱該弧為此兩邊中點(diǎn)連線的EVA。纾瑘D1中,在△ABC中,D,E分別是△ABC兩邊的中點(diǎn),如果上的所有點(diǎn)都在△ABC的內(nèi)部或邊上,則稱為DE的一條EVA。
(1)如圖2,在Rt△ABC中,∠C=90°,AC=BC=4,D,E分別是BC,AC的中點(diǎn),畫出DE的最長的EVA弧,并直接寫出此時(shí)的長;
(2)在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分別是AB,AC的中點(diǎn).
①若t=1,求DE的EVA弧所在圓的圓心P的縱坐標(biāo)m的取值范圍;
②若在△ABC中存在一條DE的EVA弧,使得所在圓的圓心P在△ABC的內(nèi)部或邊上,直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為⊙O上異于A、B的兩點(diǎn),連接CD,過點(diǎn)C作CE⊥DB,交DB的延長線于點(diǎn)E.
(1)連接AC、AD,求證:∠DAC+∠ACE=180°.
(2)若∠ABD=2∠BDC,求證:CE是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com