【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,聯(lián)結(jié)DE并延長(zhǎng)至點(diǎn)F,使EF=AE,聯(lián)結(jié)AF,CF,聯(lián)結(jié)BE并延長(zhǎng)交CF于點(diǎn)G.
(1)求證:BC=DF;
(2)若BD=2DC,求證:GF=2EG;
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)先證明△CDE是等邊三角形,再根據(jù)∠CDE=∠ABC=60°推出DF∥AB,然后根據(jù)推出AF∥BC,從而得出四邊形ABDF是平行四邊形,于是AB=DF,進(jìn)一步即得結(jié)論;
(2)先用SAS證明△BCE≌△FDC,從而得∠CBE=∠DFC,再證△BDE∽△FGE,于是可得,進(jìn)一步即可證得結(jié)論.
證明:(1)∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠ACB=60°,
∵CD=CE,∴△CDE是等邊三角形,
∴∠CDE=∠ABC=60°,∴DF∥AB,
∵EF=AE,DE=CE,∴,∴AF∥BC,
∴四邊形ABDF是平行四邊形,∴AB=DF,
又∵AB=BC,∴BC=DF;
(2)∵△CDE是等邊三角形,∴∠CDE=∠DCE=60°,CE=CD=DE,
又∵BC=DF,∴△BCE≌△FDC(SAS),∴∠CBE=∠DFC,
又∵∠BED=∠FEG,∴△BDE∽△FGE,∴,
又∵CD=DE,BD=2CD,∴,
∴GF=2EG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地鐵10號(hào)線某站點(diǎn)出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點(diǎn)端6米的處,用1.5米的測(cè)角儀測(cè)得電梯終端處的仰角為14°,求電梯的坡度與長(zhǎng)度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在海灣森林公園放風(fēng)箏.如圖所示,小明在A處,風(fēng)箏飛到C處,此時(shí)線長(zhǎng)BC為40米,若小明雙手牽住繩子的底端B距離地面1.5米,從B處測(cè)得C處的仰角為60°,求此時(shí)風(fēng)箏離地面的高度CE.(計(jì)算結(jié)果精確到0.1米,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2﹣x+c的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)為A(﹣1,0),頂點(diǎn)為B.點(diǎn)C(5,m)在拋物線上,直線BC交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式及點(diǎn)E的坐標(biāo);
(2)聯(lián)結(jié)AB,求∠B的正切值;
(3)點(diǎn)G為線段AC上一點(diǎn),過(guò)點(diǎn)G作CB的垂線交x軸于點(diǎn)M(位于點(diǎn)E右側(cè)),當(dāng)△CGM與△ABE相似時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+4(a≠0)與x軸交于點(diǎn)A和點(diǎn)B(2,0),與y軸交于點(diǎn)C,點(diǎn)D是拋物線在第一象限的點(diǎn).
(1)當(dāng)△ABD的面積為4時(shí),
①求點(diǎn)D的坐標(biāo);
②聯(lián)結(jié)OD,點(diǎn)M是拋物線上的點(diǎn),且∠MDO=∠BOD,求點(diǎn)M的坐標(biāo);
(2)直線BD、AD分別與y軸交于點(diǎn)E、F,那么OE+OF的值是否變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(a,4),B(﹣4,b)是一次函數(shù)與反比例函數(shù)圖象的兩個(gè)交點(diǎn).
(1)若a=1,求反比例函數(shù)的解析式及b的值;
(2)在(1)的條件下,根據(jù)圖象直接回答:當(dāng)x取何值時(shí),反比例函數(shù)大于一次函數(shù)的值?
(3)若a﹣b=4,求一次函數(shù)的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B的圓心,以任意長(zhǎng)為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長(zhǎng)為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長(zhǎng)交AD于點(diǎn)E,則DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色出行是對(duì)環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小
組為了了解“共享單車”的使用情況,對(duì)本校教師在3月6日至3月10日使用單車的情況進(jìn)行了問(wèn)卷調(diào)查,
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)3月7日使用“共享單車”的教師人數(shù)為人,并請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)不同品牌的“共享單車”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對(duì)有過(guò)使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形中,,點(diǎn),分別為,的中點(diǎn),將沿翻折,得到,的延長(zhǎng)線交于點(diǎn).
(1)判斷的形狀為 ;
(2)當(dāng)時(shí),求證四邊形為正方形;
(3)若,連接,當(dāng)時(shí),直接寫出的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com