【題目】已知函數(shù)是關于的二次函數(shù),求:

求滿足條件的值;

當拋物線開口向下時,請寫出此時拋物線的頂點坐標;

為何值時,拋物線有最小值?最小值是多少?當為何值時,的增大而增大?

【答案】 ;拋物線的頂點坐標為; ,最小值為時,隨著增大而增大.

【解析】

(1)由二次函數(shù)定義即可求解,注意二次項系數(shù)不能為零;

(2)依題意確定m值,再將一般式化為頂點式即可;

(3)圖像開口向上有最小值,據(jù)此確定m后寫出二次函數(shù)頂點式,進而求解最小值,確定函數(shù)增減性.

由題意得:

解得,

,

整理得,

解得,,,

綜上所述,;

拋物線開口向下,

,

,

,

二次函數(shù)為,

拋物線的頂點坐標為

拋物線有最小值,

,

二次函數(shù)為

最小值為,

時,隨著增大而增大.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,點EBC上,AE=AD,DF⊥AE,垂足為F.

(1)求證.DF=AB;

(2)若∠FDC=30°,且AB=4,求AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務,按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關系:

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

(2)設第x天生產(chǎn)的產(chǎn)品成本為P/件,P的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求Wx的函數(shù)關系式,并求出第幾天時利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,“地鐵單車”已成為很多市民出行的選擇張老師從學校站出發(fā),先乘坐地鐵到某一站出地鐵,再騎共享單車回家,設他出地鐵的站點與學校距離為單位:千米,乘坐地鐵的時間為單位分鐘,經(jīng)測量,得到如下數(shù)據(jù):

地鐵站

A

 B

 C

 D

 E

千米

6

 10

 

 15

 分鐘

9

12

a

 20

 b

根據(jù)表中數(shù)據(jù)的規(guī)律,直接寫出表格中a、b的值和關于x的函數(shù)表達式;

張老師騎單車的時間單位:分鐘也受x的影響,其關系可以用米描述,

若張老師出地鐵的站點與學校距離為14千米,請求出張老師從學校回到家所需的時間;

若張老師準備在離家較近的AB,C,DE中的某一站出地鐵,請問:張老師應選擇在哪一站出地鐵,才能使他從學校回到家所需的時間最短?并求出最短時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABCDAD邊延長至點E,使DEAD,連接CE,FBC邊的中點,連接FD

(1)求證:四邊形CEDF是平行四邊形;

(2)AB3,AD4,∠A60°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直線yx+3x軸、y軸分別相于點A和點B,點C在線段AO上.

將△CBO沿BC折疊后,點O恰好落在AB邊上點D

1)求直線BC的解析式;

2)求點D的坐標;

3P為平面內(nèi)一動點,且以A、B、CP為頂點的四邊形為平行四邊形,直接寫出點P坐標   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解題

1)閱讀理解:如圖①,等邊內(nèi)有一點,若點到頂點,,的距離分別為3,4,5,求的大小.

思路點撥:考慮到,不在一個三角形中,采用轉(zhuǎn)化與化歸的數(shù)學思想,可以將繞頂點逆時針旋轉(zhuǎn)處,此時,這樣,就可以利用全等三角形知識,結(jié)合已知條件,將三條線段的長度轉(zhuǎn)化到一個三角形中,從而求出的度數(shù).請你寫出完整的解題過程.

2)變式拓展:請你利用第(1)題的解答思想方法,解答下面問題:

已知如圖②,中,,、上的點且,,,求的大小.

3)能力提升:如圖③,在中,,,,點內(nèi)一點,連接,,且,請直接寫出的值,即______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將直角三角形的直角頂點放在點處,兩直角邊與坐標軸交于如圖所示的點和點,則的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,過點A作直線EF.

(1)如圖①,AB是直徑,要使EF是⊙O的切線,還須添加一個條件是(只需寫出三種情況).

(ī)   (īī)   (īīī)   

(2)如圖(2),若AB為非直徑的弦,∠CAE=∠B,則EF是⊙O的切線嗎?為什么?

查看答案和解析>>

同步練習冊答案