【題目】閱讀理解題
(1)閱讀理解:如圖①,等邊內(nèi)有一點,若點到頂點,,的距離分別為3,4,5,求的大小.
思路點撥:考慮到,,不在一個三角形中,采用轉(zhuǎn)化與化歸的數(shù)學思想,可以將繞頂點逆時針旋轉(zhuǎn)到處,此時,這樣,就可以利用全等三角形知識,結(jié)合已知條件,將三條線段的長度轉(zhuǎn)化到一個三角形中,從而求出的度數(shù).請你寫出完整的解題過程.
(2)變式拓展:請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,中,,,、為上的點且,,,求的大小.
(3)能力提升:如圖③,在中,,,,點為內(nèi)一點,連接,,,且,請直接寫出的值,即______.
【答案】
【解析】
(1)根據(jù)旋轉(zhuǎn)變換前后的兩個三角形全等,全等三角形對應邊相等,全等三角形對應角相等以及等邊三角形的判定和勾股定理逆定理解答;
(2)把繞點A逆時針旋轉(zhuǎn)90°得到,根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,,,,再求出,從而得到,然后利用“邊角邊”證明和全等,根據(jù)全等三角形對應邊相等可得,再利用勾股定理列式即可得證.
(3)將繞點B順時針旋轉(zhuǎn)至處,連接,根據(jù)直角三角形角所對的直角邊等于斜邊的一半求出,即的長,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得,等邊三角形三個角都是求出,然后求出、、、四點共線,再利用勾股定理列式求出,從而得到.
解:(1),
由題意知旋轉(zhuǎn)角,
為等邊三角形,
,
易證為直角三角形,且 ,
,
故答案為:;
(2)如圖2,把繞點A逆時針旋轉(zhuǎn)得到,
由旋轉(zhuǎn)的性質(zhì)得, ,
,
在和中,
,
,
由勾股定理得, ,
即,
.
(3)如圖3,將繞點B順時針旋轉(zhuǎn)至處,連接,
在中, ,
,
,
繞點B順時針方向旋轉(zhuǎn),
如圖所示;
,
繞點B順時針方向旋轉(zhuǎn),得到,
,
是等邊三角形,
,
,
四點共線,
在中,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,點C是優(yōu)弧ACB的中點,D、E分別是OA、OB上的點,且AD=BE,弦CM、CN分別過點D、E.
(1)求證:CD=CE.
(2)求證:=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△OAB是邊長為2的等邊三角形過點A的直線與軸交于點E,
(1)求點E坐標。
(2)求過A,O,E三點的拋物線表達式。
(3)若P是(2)中求出的拋物線AE段上的一動點(不與A、E重合),設四邊形OAPE的面積為S,求S的最大值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)是關(guān)于的二次函數(shù),求:
求滿足條件的值;
當拋物線開口向下時,請寫出此時拋物線的頂點坐標;
為何值時,拋物線有最小值?最小值是多少?當為何值時,隨的增大而增大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①如果兩個三角形全等,那么這兩個三角形一定成軸對稱;②數(shù)軸上的點和實數(shù)一一對應;③若,則;④兩個無理數(shù)的和一定為無理數(shù);⑤精確到十分位;⑥如果一個數(shù)的算術(shù)平方根等于它本身,那么這個數(shù)是0.其中正確的說法有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O 的內(nèi)接四邊形 ABCD 兩組對邊延長線分別交于點 E、F.
(1)若∠E=∠F,求證:∠ADC=∠ABC;
(2)若∠E=∠F=40°,求∠A 的度數(shù);
(3)若∠E=30°,∠F=40°,求∠A 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC
(1)填空:如圖1,∠B= °,∠C= °;
(2)如圖2,若M為線段BC上的點,過M作MH⊥AD,交AD的延長線于點H,分別交直線AB、AC與點N、E.
①求證:△ANE是等腰三角形;
②線段BN、CE、CD之間的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形中,為正方形的外角的角平分線,點在線段上,過點作于點,連接,過點作于點,交射線于點.
()如圖1,若點與點重合.
①依題意補全圖1.
②判斷與的數(shù)量關(guān)系并加以證明.
()如圖2,若點恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計算結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com