【題目】如圖,在四邊形ABCD中,ADBC,AD=2,AB=,以點(diǎn)A為圓心,AD為半徑的圓與BC相切于點(diǎn)E,交AB于點(diǎn)F

(1)求ABE的大小及的長(zhǎng)度;

(2)在BE的延長(zhǎng)線上取一點(diǎn)G,使得上的一個(gè)動(dòng)點(diǎn)P到點(diǎn)G的最短距離為,求BG的長(zhǎng).

【答案】(1)45°,;(2)4

【解析】

試題分析:(1)連接AE,如圖1,根據(jù)圓的切線的性質(zhì)可得AEBC,解RtAEB可求出ABE,進(jìn)而得到DAB,然后運(yùn)用圓弧長(zhǎng)公式就可求出的長(zhǎng)度;

(2)如圖2,根據(jù)兩點(diǎn)之間線段最短可得:當(dāng)A、P、G三點(diǎn)共線時(shí)PG最短,此時(shí)AG=AP+PG==AB,根據(jù)等腰三角形的性質(zhì)可得BE=EG,只需運(yùn)用勾股定理求出BE,就可求出BG的長(zhǎng).

試題解析:(1)連接AE,如圖1,AD為半徑的圓與BC相切于點(diǎn)E,AEBC,AE=AD=2.

在RtAEB中,sinABE===∴∠ABE=45°.ADBC,∴∠DAB+ABE=180°,∴∠DAB=135°,的長(zhǎng)度為=;

(2)如圖2,根據(jù)兩點(diǎn)之間線段最短可得:當(dāng)A、P、G三點(diǎn)共線時(shí)PG最短,此時(shí)AG=AP+PG==AG=AB.AEBG,BE=EG.BE===2,EG=2,BG=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商城某專賣(mài)店銷(xiāo)售每件成本為40元的商品,從銷(xiāo)售情況中隨機(jī)抽取一些情況制成統(tǒng)計(jì)表如下:(假設(shè)當(dāng)天定的售價(jià)是不變的,且每天銷(xiāo)售情況均服從這種規(guī)律)

每件銷(xiāo)售價(jià)(元)

50

60

70

75

80

85

……

每天售出件數(shù)

300

240

180

150

120

90

……

1)觀察這些數(shù)據(jù),找出每天售出件數(shù)y與每件售價(jià)x(元)之間的函數(shù)關(guān)系,并寫(xiě)出該函數(shù)關(guān)系式;

2)該店原有兩名營(yíng)業(yè)員,但當(dāng)每天售出量超過(guò)168件時(shí),則必須增派一名營(yíng)業(yè)員才能保證營(yíng)業(yè),設(shè)營(yíng)業(yè)員每人每天工資為40元,求每件產(chǎn)品定價(jià)多少元,才能使純利潤(rùn)最大(純利潤(rùn)指的是收入總價(jià)款扣除成本及營(yíng)業(yè)員工資后的余額,其他開(kāi)支不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC6cm,BC8m,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)沿CB邊向點(diǎn)B2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

1)如果點(diǎn)PQ同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘時(shí)△PCQ的面積為8cm2?

2)如果點(diǎn)P,Q同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘時(shí)以PC、Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A1,m),B4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過(guò)的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?

(3)過(guò)點(diǎn)Px軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)PPEx軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.

1)現(xiàn)該商場(chǎng)要保證每天盈利6 000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)D為BC邊上的一點(diǎn),且AD=AB=5, AD⊥AB于點(diǎn)A,過(guò)點(diǎn)D作DE⊥AD,DE交AC于點(diǎn)E,若DE=2,則ADC的面積為(

A.B.4C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,分別為上的點(diǎn),沿直線折疊,使點(diǎn)B恰好落在上的處,當(dāng)恰好為直角三角形時(shí),的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)By軸上的一動(dòng)點(diǎn),將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得線段BC,若點(diǎn)C恰好落在反比例函數(shù)y的圖象上,則點(diǎn)B的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案