【題目】對(duì)于多項(xiàng)式Ax2bxc(b、c為常數(shù)),作如下探究:
(1)不論x取何值,A都是非負(fù)數(shù),求b與c滿足的條件;
(2)若A是完全平方式,
①當(dāng)c=9時(shí),b= ;當(dāng)b=3時(shí),c= ;
②若多項(xiàng)式Bx2dxc與A有公因式,求d的值.
【答案】(1);(2)①±6;;②0.
【解析】
(1)根據(jù)完全平方的非負(fù)性配方即可;
(2)①根據(jù)完全平方公式的特征即可求出;
②根據(jù)A是完全平方式,可設(shè),再根據(jù)多項(xiàng)式Bx2dxc與A有公因式,可設(shè),然后利用對(duì)應(yīng)系數(shù)法可得:,從而得出,即可求出d的值.
解:(1)
=
=
=
∵,不論x取何值,A都是非負(fù)數(shù)
∴
∴
(2)①當(dāng)c=9時(shí)
∵A是完全平方式,
即x2bx9= x2bx32是完全平方式,
∴b=±2×3=±6;
當(dāng)b=3時(shí)
∵A是完全平方式
即x23xc是完全平方式
∴
②∵A是完全平方式,
設(shè)
∵Bx2dxc與A有公因式
∴設(shè)
由①式可得:,由②式可得:
故
∴
解得:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-2,4),B(4,2),在x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是( )
A. (-2,0) B. (0,0) C. (2,0) D. (4,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C在y軸的正半軸上,且AB=OC.
(1)求點(diǎn)C的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 圓柱的軸截面是過母線的截面中面積最大的一個(gè)
B. 圓錐的軸截面是所有過頂點(diǎn)的截面中面積最大的一個(gè)
C. 圓臺(tái)的所有平行于底面的截面都是圓
D. 圓錐所有的軸截面是全等的等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,且BD=CD.
(1)圖中與△BDE全等的三角形是 ,請(qǐng)加以證明;
(2)若AE=6 cm,AC=4 cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠MPN的角平分線PF經(jīng)過圓心O交⊙O于點(diǎn)E、F,PN是⊙O的切線,B為切點(diǎn).
(1)求證:PM也是⊙O的切線;
(2)如圖2,在(1)的前提下,設(shè)切線PM與⊙O的切點(diǎn)為A,連接AB交PF于點(diǎn)D;連接AO交⊙O于點(diǎn)C,連接BC,AF;記∠PFA為∠α.
①若BC=6,tan∠α=,求線段AD的長;
②小華探究圖2之后發(fā)現(xiàn):EF2=mODOP(m為正整數(shù)),請(qǐng)你猜想m的數(shù)值?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料1:
對(duì)于兩個(gè)正實(shí)數(shù),由于,所以,即,所以得到,并且當(dāng)時(shí),
閱讀材料2:
若,則 ,因?yàn)?/span>,,所以由閱讀材料1可得:,即的最小值是2,只有時(shí),即=1時(shí)取得最小值.
根據(jù)以上閱讀材料,請(qǐng)回答以下問題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時(shí),有最小值,最小值為 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OM在第一象限,且與x軸正半軸的夾角為60°,過點(diǎn)D(6,0)作DA⊥OM于點(diǎn)A,作線段 OD的垂直平分線BE交x軸于點(diǎn)E,交AD于點(diǎn)B,作射線OB.以AB為邊在△AOB的外側(cè)作正方形ABCA1,延長A1C交射線OB于點(diǎn)B1,以A1B1為邊在△A1OB1的外側(cè)作正方形A1B1C1A2,延長A2C1交射線OB于點(diǎn)B2,以A2B2為邊在△A2OB2的外側(cè)作正方形A2B2C2A3……按此規(guī)律進(jìn)行下去,則正方形A2017B2017C2017A2018的周長為______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com