如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:                    

(1)△AEF≌△CEB;                                                                            

(2)AF=2CD.                                                                                 

                                                                        


【考點(diǎn)】全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).                               

【專題】證明題.                                                                              

【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;                

(2)由全等三角形的性質(zhì)得AF=BC,由等腰三角形的性質(zhì)“三線合一”得BC=2CD,等量代換得出結(jié)論.                

【解答】證明:(1)∵AD⊥BC,CE⊥AB,                                           

∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,                                               

∴∠CFD=∠B,                                                                                 

∵∠CFD=∠AFE,                                                                             

∴∠AFE=∠B                                                                                     

在△AEF與△CEB中,                                                                       

,                                                                             

∴△AEF≌△CEB(AAS);                                                                    

                                                                                                          

(2)∵AB=AC,AD⊥BC,                                                                     

∴BC=2CD,                                                                                      

∵△AEF≌△CEB,                                                                            

∴AF=BC,                                                                                        

∴AF=2CD.                                                                                      

【點(diǎn)評(píng)】本題主要考查了全等三角形性質(zhì)與判定,等腰三角形的性質(zhì),運(yùn)用等腰三角形的性質(zhì)是解答此題的關(guān)鍵.                                                                             


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一條船在海面上自西向東沿直線航行,在A處測得航標(biāo)C在北偏東60°方向上,前進(jìn)100米到達(dá)B處,又測得航標(biāo)C在北偏東45°方向上.                                                                                  

(1)請(qǐng)根據(jù)以上描述,畫出圖形.                                                         

(2)已知以航標(biāo)C為圓心,120米為半徑的圓形區(qū)域內(nèi)有淺灘,若這條船繼續(xù)前進(jìn),是否有被淺灘阻礙的危險(xiǎn)?為什么?                                                                       

                                                                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在反比例函數(shù)y=中,當(dāng)x>0時(shí),y隨x的增大而減小,則二次函數(shù)y=ax2﹣ax的圖象大致是下圖中的( 。                                              

A.            B.             C.            D.

                                                                                                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.                

(1)根據(jù)題意,填寫如表:                                                                   

蔬菜的批發(fā)量(千克)            …                 25                 60                 75                 90 …

所付的金額(元)                   …                 125                                         300                   …

(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;                                                                  

(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤最大?最大利潤為多少元?                                                

                                                             

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知點(diǎn)A(0,1),B(0,﹣1),以點(diǎn)A為圓心,AB為半徑作圓,交x軸的正半軸于點(diǎn)C,則∠BAC等于      度.                                                                       

                                                                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


以▱ABCD的四條邊為邊,在其形外分別作正方形,如圖,連接EF、GH、IJ、KL.若▱ABCD的面積為5,則圖中陰影部分四個(gè)三角形的面積和為(  )                                                              

                                                                         

A.5                            B.10                           C.15                          D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知是關(guān)于x的一次函數(shù),則m         n         

直線x軸的交點(diǎn)坐標(biāo)是__________,與y軸的交點(diǎn)坐標(biāo)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


C

查看答案和解析>>

同步練習(xí)冊答案