【題目】如圖,在平面直角坐標系xOy中,⊙P與y軸相切于點C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長為4 ,求點P的坐標.

【答案】解:過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,
∵⊙P與y軸相切于點C,
∴PC⊥y軸,
∴P點的橫坐標為4,
∴E點坐標為(4,4),
∴△EOD和△PEH都是等腰直角三角形,
∵PH⊥AB,
∴AH= AB=2 ,
在△PAH中,PH= = =2,
∴PE= PH=2
∴PD=4+2 ,
∴P點坐標為(4,4+2 ).

【解析】過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結(jié)PA,根據(jù)切線的性質(zhì)得PC⊥y軸,則P點的橫坐標為4,所以E點坐標為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據(jù)垂徑定理由PH⊥AB得AH= AB=2 ,根據(jù)勾股定理可得PH=2,于是根據(jù)等腰直角三角形的性質(zhì)得PE= PH=2 ,則PD=4+2 ,然后利用第一象限點的坐標特征寫出P點坐標.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,兩個全等的等邊三角形的邊長為1m,一個微型機器人由A點開始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運動,行走2012m停下,則這個微型機器人停在(

A.點A B.點B C.點C D.點E

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數(shù)字﹣1,2,5,;乙袋中裝有3個完全相同的小球,分別標有數(shù)字3,﹣5,﹣7;小宇從甲袋中隨機摸出一個小球,記下數(shù)字為m,小惠從乙袋中隨機摸出一個小球,記下的數(shù)字為n.
(1)若點Q的坐標為(m,n),求點Q在第四象限的概率;
(2)已知關(guān)于x的一元二次方程2x2+mx+n=0,求該方程有實數(shù)根的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D為AC邊上一點,∠DBC=∠A.

(1)求證:△BCD∽△ACB;
(2)如果BC= ,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點).

(1)將△ABC繞點B順時針旋轉(zhuǎn)90°得到△A′BC′,請畫出△A′BC′,并求BA邊旋轉(zhuǎn)到BA′位置時所掃過圖形的面積;
(2)請在網(wǎng)格中畫出一個△A″B″C″,使△A″B″C″∽△ABC,且相似比不為1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處(如圖1).

(1)如圖2,設折痕與邊BC交于點O,連接,OP、OA.已知△OCP與△PDA的面積比為1:4,求邊AB的長;
(2)動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN、CA,交于點F,過點M作ME⊥BP于點E.
①在圖1中畫出圖形;
②在△OCP與△PDA的面積比為1:4不變的情況下,試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點C的橫坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:①若a<1,則(a﹣1) =﹣ ;②平行四邊形既是中心對稱圖形又是軸對稱圖形;③ 的算術(shù)平方根是3;④如果方程ax2+2x+1=0有兩個不相等的實數(shù)根,則實數(shù)a<1.其中正確的命題個數(shù)是(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元,還了解到如下信息:

(1)請問采摘的黃瓜和茄子各多少千克?
(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

同步練習冊答案