【題目】把△ABC放置在平面直角坐標系中,點A的坐標為(0,8),點B的坐標為(-6,0),點C的坐標為(8,0),M,N分別是線段AB,AC上的點,將△AMN沿直線MN翻折后,點A落在x軸上的A′處.
Ⅰ當MN∥x軸時,判斷△A'CN的形狀.
Ⅱ如圖,當A'M⊥AB時.
①求A'的坐標;②求MN的長.
Ⅲ當△A'MB是等腰三角形時,直接寫出A'的坐標.
【答案】(Ⅰ)等腰直角三角形;(Ⅱ)①,;②;(Ⅲ)或,或,
【解析】
(Ⅰ)得出∠ANM=∠A'NM=∠ACO=45°,則∠A'NC=90°,即可證出△A'NC為等腰直角三角形;
(Ⅱ)①設(shè)MA'=x,則BM=10-x,得出,解得x=,求出A'B,即可得出答案;
②證明△AMN∽△ACB,可得出答案;
(Ⅲ)分三種情況,①當MB=MA'時,②當MA'=A'B時,③當BM=BA'時,可求出OA'的長,則答案可求出.
解:(Ⅰ)∵點A的坐標為(0,8),點B的坐標為(-6,0),點C的坐標為(8,0),
∴OA=OC=8,OB=6,
∵∠AOC=90°,
∴∠ACO=45°,AB=,AC=OA=,
將沿直線翻折后,點落在軸上的處,
,,,
軸,
,
,
△為等腰直角三角形,
(Ⅱ)①當時,,
,
設(shè),則,
,
解得,
,
,
,
的坐標為,;
②,,
,
,
;
(Ⅲ)①當時,與點重合,則,
②當時,設(shè),,
過點作于點,則,
,,
,
解得,
,
,,
③當時,過點作軸于點,
設(shè),,
則,,
,
,
,
解得:(負值舍去),
,
,
,.
綜合以上可得,當△是等腰三角形時,點的坐標為或,或,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點和.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)點是線段上一點,過點作軸于點,交反比例函數(shù)圖象于點,連接、,若的面積為,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC,AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=8,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BC是⊙O的直徑,CE是⊙O的弦,過點E作⊙O的切線,交CB的延長線于點G,過點B作BF⊥GE于點F,交CE的延長線于點A.
(1)求證:∠ABG=2∠C;
(2)若GF=3,GB=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F是OE上的一點,CFBD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=6,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.
Ⅰ的面積等于______;
Ⅱ若四邊形DEFG是中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法不要求證明________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店第一個月以每件100元的價格購進200件襯衫,以每件150元的價格售罄.由于市場火爆,該商店第二個月再次購進一批襯衫,與第一批襯衫相比,這批襯衫的進價和數(shù)量都有一定的提高,其數(shù)量的增長率是進價增長率的2.5倍,該批襯衫仍以每件150元銷售.第二個月結(jié)束后,商店對剩余的50件襯衫以每件120元的價格一次性清倉銷售,商店出售這兩批襯衫共盈利17500元.設(shè)第二批襯衫進價的增長率為x.
(1)第二批襯衫進價為 元,購進的數(shù)量為 件.(都用含x的代數(shù)式表示,不需化簡)
(2)求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵下崗工人再就業(yè),某地市政府規(guī)定,企業(yè)按成本價提供產(chǎn)品給下崗人員自主銷售,成本價與出廠價之間的差價由政府承擔.老李按照政策投資銷售本市生產(chǎn)的一種兒童面條.已知這種兒童面條的成本價為每袋12元,出廠價為每袋16元,每天銷售量(袋)與銷售單價(元)之間的關(guān)系近似滿足一次函數(shù):.
(1)老李在開始創(chuàng)業(yè)的第1天將銷售單價定為17元,那么政府這一天為他承擔的總差價為多少元?
(2)設(shè)老李獲得的利潤為(元),當銷售單價為多少元時,每天可獲得最大利潤?
(3)物價部門規(guī)定,這種面條的銷售單價不得高于24元,如果老李想要每天獲得的利潤不低于216元,那么政府每天為他承擔的總差價最少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課外閱讀是提高學生素養(yǎng)的重要途徑.某校為了了解學生課外閱讀情況,隨機抽查了名學生,統(tǒng)計他們平均每天課外閱讀時間.根據(jù)的長短分為,,,四類,下面是根據(jù)所抽查的人數(shù)繪制的兩幅不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息,解答下面的問題:
(1)本次調(diào)查的樣本容量為_______;
(2)求表格中的的值,并在圖中補全條形統(tǒng)計圖(如圖);
(3)該,F(xiàn)有名學生,請你估計該校共有多少名學生的課外閱讀時間不少于?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com