【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉(zhuǎn)90°
得到△OA1B1 .
(1)線段A1B1的長是 , ∠AOA1的度數(shù)是;
(2)連結(jié)AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.
【答案】
(1)6;90°
(2)解:∵A1B1=AB=6,OA1﹣OA=6,∠OA1B1=∠OAB=90°,∠AOA1=90°,
∴∠OA1B1=∠AOA1,A1B1=OA,
∴B1A1∥OA,
∴四邊形OAA1B1是平行四邊形
(3)解:S=OAA1O=6×6=36.
即四邊形OAA1B1的面積是36
【解析】解:(1)A1B1=AB=6,∠AOA1=90°.
故答案是:6,90°;
【考點精析】本題主要考查了平行四邊形的判定和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識點,需要掌握兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形;①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展每天鍛煉1小時活動,老師對本校八年級學(xué)生進(jìn)行一分鐘跳繩測試,并對跳繩次數(shù)進(jìn)行統(tǒng)計,繪制了八(1)班一分鐘跳繩次數(shù)的頻數(shù)分布直方圖和八年級其余班級一分鐘跳繩次數(shù)的扇形統(tǒng)計圖.已知在圖1中,組中值為150次一組的 頻率為0.2.(說明: 組中值為190次的組別為 180≤次數(shù)<200)
請結(jié)合統(tǒng)計圖完成下列問題:
(1)八(1)班的人數(shù)是 ,組中值為110次一組的頻率為 ;
(2)請把頻數(shù)分布直方圖補充完整;
(3)如果一分鐘跳繩次數(shù)不低于120次的同學(xué)視為達(dá)標(biāo),八年級同學(xué)一分鐘跳繩的達(dá)標(biāo)率不低于90%,那么八年級同學(xué)至少有多少人?請寫出解答過程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.
(1)若1表示的點與﹣1表示的點重合,則﹣4表示的點與數(shù) _________ 表示的點重合;
(2)若﹣1表示的點與5表示的點重合,回答以下問題:
①13表示的點與數(shù) _________ 表示的點重合;
②若數(shù)軸上A、B兩點之間的距離為2018(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=3a2b﹣2ab2+abc,小明同學(xué)錯將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b﹣3ab2+4abc.
(1)計算B的表達(dá)式;
(2)求出2A﹣B的結(jié)果;
(3)小強同學(xué)說(2)中的結(jié)果的大小與c的取值無關(guān),對嗎?若a=,b=,
求(2)中式子的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點A,B,與雙曲線y=在第一象限內(nèi)交于點C(1,m).
(1)求m和n的值;
(2)過x軸上的點D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線y=交于點P,Q,求△APQ的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:
(1)拋物線頂點坐標(biāo);
(2)對稱軸為
(3)當(dāng)x=時,y有最大值是;
(4)當(dāng)時,y隨著x得增大而增大.
(5)當(dāng)時,y>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標(biāo)為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)﹣12+15﹣|﹣7﹣8|
(2)(﹣3)×(﹣9)﹣(﹣5)
(3)
(4)
化簡:(5)
(6)7a+3(a-3b)-2(b-3a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;
(2)平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2;請在坐標(biāo)系中作出旋轉(zhuǎn)中心S并寫出旋轉(zhuǎn)中心S的坐標(biāo):S
(4)在x軸上有一點P,使得PA+PB的值最小,請作圖標(biāo)出P點并寫出點P的坐標(biāo).P .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com