【題目】已知:在中,,,,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿方向向終點(diǎn)運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā),以每秒個(gè)單位的速度沿方向向終點(diǎn)運(yùn)動(dòng).設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.
連接,在點(diǎn)、運(yùn)動(dòng)過(guò)程中,與是否始終相似?請(qǐng)說(shuō)明理由;
連接,設(shè)的面積為,求關(guān)于的函數(shù)關(guān)系式;
連接、,是否存在的值,使?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由;
探索:把沿直線折疊成,設(shè)與交于點(diǎn),當(dāng)是直角三角形時(shí),請(qǐng)直接寫出的值.
【答案】相似,理由見(jiàn)解析;∴;存在,的值為;,.
【解析】
(1)已知AC、BC的長(zhǎng),根據(jù)勾股定理即可求得AB的長(zhǎng),根據(jù),進(jìn)而即可求得△APQ∽△ABC.
(2)根據(jù)△APQ∽△ABC即可求得,即可求得S關(guān)于t的方程式.
(3)先求證△PCQ∽△QBC進(jìn)而可以得,即,求得t的值即可解題.
(4)分別用t表示PE、EQ、BQ的值,根據(jù)勾股定理即可求得t的值,即可解題.
(1)相似
∵∠ACB=〖90〗^
∴AB=√(AC^2+BC^2 )=5
∵PA=5/4 t,AQ=t
∴PA/AB=AQ/BC=t/4
∵∠A=∠A
∴△APQ∽△ABC
(2)∵△APQ∽△ABC
∴∠PQA=∠C=〖90〗^
∵PQ/BC=AQ/AC
∴PQ/3=t/4
∴PQ=3/4 t
∵CQ=4-t
∴S=1/23/4 t(4-t)=-3/8 t^2+3/2 t
(3)存在
∵PC⊥BQ
∴∠PCQ+∠BQC=〖90〗^
∵∠CBQ+∠BQC=〖90〗^
∴∠PCQ=∠CBQ
∵∠PQC=∠BCQ=〖90〗^
∴△PCQ∽△QBC
∴PQ/CQ=CQ/BC
∴(3/4 t)/(4-t)=(4-t)/3
∴t_1=(41+3√73)/8(舍去)t_2=(41-3√73)/8
∴存在t的值為(41-3√73)/8,使PC⊥BQ.
(4)t_1=1,t_2=7/4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,上午8時(shí),一條船從A處出發(fā),以15海里/時(shí)的速度向正北航行,10時(shí)到達(dá)B處,從A、B望燈塔C,測(cè)得∠NAC=42°,∠NBC=84°,則從B處到燈塔C的距離_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC是邊長(zhǎng)3cm的等邊三角形.動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).
(1)如圖1,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),那么t= (s)時(shí),△PBC是直角三角形;
(2)如圖2,若另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△PBQ是直角三角形?
(3)如圖3,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△DCQ是等腰三角形?
(4)如圖4,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D,連接PC.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).請(qǐng)你猜想:在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,△PCD和△QCD的面積有什么關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. “明天降雨的概率是”表示明天有的時(shí)間降雨
B. “彩票中獎(jiǎng)的概率是”表示買張彩票一定會(huì)中獎(jiǎng)
C. “拋一枚硬幣正面朝上的概率是”表示每拋次就有次出現(xiàn)正面朝上
D. “拋一枚普通的正方體骰子,出現(xiàn)朝正面的數(shù)為奇數(shù)的概率是”表示如果這個(gè)骰子拋很多很多次,那么平均每次就有次出現(xiàn)朝正面的數(shù)為奇數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),,把拋物線在軸及其上方的部分記作,將向右平移得,與軸交于點(diǎn),,若直線與,共有個(gè)不同的交點(diǎn),則的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】符合下列條件之一的四邊形不一定是菱形的是( )
A. 四條邊相等
B. 兩組鄰邊分別相等
C. 對(duì)角線相互垂直平分
D. 兩條對(duì)角線分別平分一組對(duì)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,4),B(4,2),在x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com