【題目】如圖1,在中,弦弦,垂足為點(diǎn),連接、、,.
(1)求證:
(2)如圖2,過(guò)點(diǎn)作,垂足為點(diǎn),求證:
(3)如圖3,在(2)的條件下,延長(zhǎng)、交于點(diǎn),過(guò)點(diǎn)作,垂足為,交于,若,,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)
【解析】
(1)連接OB,OD,利用圓周角定理結(jié)合三角形內(nèi)角和定理可得結(jié)果;
(2)過(guò)O作OT⊥BC于T,連接OB,OC,在ED上找點(diǎn)G,使得CE=EG,連接BG,證明,得到OH=BT,設(shè)∠BDC=α,利用垂直平分線(xiàn)的性質(zhì)得到BC=BG,結(jié)合三角形外角的性質(zhì)得到BC=BG=GD,從而可得結(jié)果;
(3)在AF上作點(diǎn)Q,使得AQ=BQ,連接BQ,OQ,過(guò)B作BW⊥AF于點(diǎn)W,設(shè)BF=x,則AF=3x,推出△QBF為直角三角形,利用勾股定理得出AQ、BQ、BW、FW、AW的表達(dá)式,從而得到,,設(shè)BE=n,則DE=3n,EG=3n-12,在△BEG中,利用勾股定理求出n的值,得到BE、DE、EG、EC的值,利用三角函數(shù)算出NE的長(zhǎng),再證明△CBE∽△ADE,得到,算出AE,從而得到AN,最后在△AMN利用勾股定理求出MN的長(zhǎng).
解:(1)連接OB,OD,
∵AD=AB,
∴弧AC=弧AD,
∴∠AOB=∠AOD,
∴∠OAB=∠OBA,∠OAD=∠ODA,
∴,
∵,
∴;
(2)過(guò)O作OT⊥BC于T,連接OB,OC,在ED上找點(diǎn)G,使得CE=EG,連接BG,
∵∠COB=2∠CAB,∠CAB=∠CDB,∠AOB=∠AOD,,
∴2∠OAH=2∠BAO=∠COB,
∵OC=OB,OT⊥BC,
∴∠OAH=∠BOT,
又∵∠OTB=∠OHA=90°,OB=OA,
∴,
∴OH=BT,
∵BC=2BT,
∴2OH=BC,
設(shè)∠BDC=α,
∴∠BCD=∠BAD=2α,
∵CE=GE,AB⊥CD,
∴BC=BG,則∠BGC=∠BCG=2α,
∵∠BDC=α,
∴∠GBD=α,
∴BC=BG=GD,
∴DE=EG+GD=CE+BC=CE+2OH,
即;
(3)在AF上作點(diǎn)Q,使得AQ=BQ,連接BQ,OQ,過(guò)B作BW⊥AF于點(diǎn)W,
∵AQ=BQ,OA=OB,
∴OQ垂直平分AB,
∴∠QAB=∠QBA,
∵AF=3BF,設(shè)BF=x,則AF=3x,
∵AB⊥CD,
∴∠ACD+∠CAB=90°,
∵∠ACD=∠ABD,
∴∠ABD+∠ABQ=90°,
∴△QBF為直角三角形,
設(shè)AQ=QB=a,則FQ=3x-a,在△QBF中,
,解得:,
即AQ=BQ=,QF=,
∴BW=BF×BQ÷QF=,
∴FW=,
∴AW=AF-FW=,
∴,,
由(2)知:BC=BG=DG=12,CE=EG,
∴BE=ED·tan∠BDC,
設(shè)BE=n,則DE=3n,EG=3n-12,
在△BEG中,,
解得:n=或0(舍),
∴BE=,DE=,EG=EC=,
在△DMC和△BDE中,
∠MCD=∠EBD,∠DMC=∠DEB,
∴∠MDC=∠EDB,
∴tan∠MDC=tan∠EDB=tan∠CAB=,
∴NE=DE×=,
∵∠BCE=∠BAD,∠CBE=∠ADE,
∴△CBE∽△ADE,
∴,
∴AE=3CE=,
∴AN=AE-NE=,
∴設(shè)MN=m,則AM=3m,在△AMN中,
,
解得:m=或(舍)
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】聲音在空氣中傳播的速度y(米/秒)是氣溫x (攝氏度)的一次函數(shù),下表列出了一組不同氣溫時(shí)的音速.
氣溫x/攝氏度 | 0 | 5 | 10 | 15 | 20 |
音速y/(米/秒) | 331 | 334 | 337 | 340 | 343 |
(1)求y 與 x之間的函數(shù)關(guān)系式
(2)氣溫x=22(攝氏度)時(shí),某人看到煙花燃放5秒后才聽(tīng)到聲響,那么此人與燃放的煙花所在地相距多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A.一組數(shù)據(jù)﹣2,﹣1,0,1,1,2的中位數(shù)是0
B.質(zhì)檢部門(mén)要了解一批燈泡的使用壽命,應(yīng)當(dāng)采用普查的調(diào)查方式
C.購(gòu)買(mǎi)一張福利彩票中獎(jiǎng)是一個(gè)確定事件
D.分別寫(xiě)有三個(gè)數(shù)字﹣1,﹣2,4的三張卡片(卡片的大小形狀都相同),從中任意抽取兩張,則卡片上的兩數(shù)之積為正數(shù)的概率為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AD=6,點(diǎn)E是對(duì)角線(xiàn)AC上一點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥ED,交AB于點(diǎn)F,連接DF,交AC于點(diǎn)G,將△EFG沿EF翻折,得到△EFM,連接DM,交EF于點(diǎn)N,若AF=2,則的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形的邊的中點(diǎn),的垂直平分線(xiàn)分別交、于、,若,則的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】釣魚(yú)島自古以來(lái)就是我國(guó)的神圣領(lǐng)土,為維護(hù)國(guó)家主權(quán)和海洋權(quán)利,我國(guó)海監(jiān)和漁政部門(mén)對(duì)釣魚(yú)島海域?qū)崿F(xiàn)了常態(tài)化巡航管理.如圖,某日在我國(guó)釣魚(yú)島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持20海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測(cè)得在A的東北方向,B的北偏東15°方向有一我國(guó)漁政執(zhí)法船C,求此時(shí)船C與船B的距離是多少.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形ABCD中,∠A=60°,點(diǎn)M是AD邊的中點(diǎn),連接MC,將菱形ABCD翻折,使點(diǎn)A落在線(xiàn)段CM上的點(diǎn)E處,折痕交AB于點(diǎn)N,則線(xiàn)段EC的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,為矩形的邊上一點(diǎn),動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā),點(diǎn)沿折線(xiàn)運(yùn)動(dòng)到點(diǎn)時(shí)停止,點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是秒.設(shè)同時(shí)出發(fā)秒時(shí),的面積為,已知與的函數(shù)關(guān)系圖象如圖2所示.請(qǐng)回答:
(1)線(xiàn)段的長(zhǎng)為_______cm;
(2)當(dāng)運(yùn)動(dòng)時(shí)間秒時(shí),之間的距離是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠B=90°,BC=4,AB=8,點(diǎn)D是邊AC的中點(diǎn),動(dòng)點(diǎn)P在邊AB上(點(diǎn)P不與點(diǎn)A重合),連接PD、PC,將△PDC沿直線(xiàn)PD翻折,點(diǎn)C落在點(diǎn)E處得△PDE.
(1)如圖①,若點(diǎn)E恰好與點(diǎn)A重合,求線(xiàn)段AP的長(zhǎng);
(2)如圖②,若ED交AB于點(diǎn)F,四邊形CDEP為菱形,求證:△PFE≌△AFD;
(3)連接AE,設(shè)△PDE與△ABC重疊部分的面積為S1,△PAC的面積為S2,若S1=S2時(shí),請(qǐng)直接寫(xiě)出tan∠AED的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com