【題目】已知:如圖,AB是⊙O的直徑,直線DC,DA分別切⊙O于點(diǎn)C,點(diǎn)A,連結(jié)BC,OD.
(1)求證:BC∥OD.
(2)若∠ODC=36°,AB=6,求出的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)的長(zhǎng)=.
【解析】
(1)連接OC,根據(jù)切線長(zhǎng)定理得到CD=AD,根據(jù)全等三角形的性質(zhì)得到∠AOD=∠COD,根據(jù)圓周角定理得到∠B=∠AOD,于是得到結(jié)論;
(2)根據(jù)切線長(zhǎng)定理得到∠ADC=2∠CDO=72°,根據(jù)四邊形的內(nèi)角和得到∠AOC=180°﹣∠ADC=108°,求得∠BOC=72°,根據(jù)弧長(zhǎng)公式即可得到結(jié)論.
解:(1)連接OC,
∵直線DC,DA分別切⊙O于點(diǎn)C,
∴CD=AD,
在△ADO與△CDO中,,
∴△ADO≌△CDO(SSS),
∴∠AOD=∠COD,
∴∠AOD=AOC,
∵∠B=AOC,
∴∠B=∠AOD,
∴BC∥OD;
(2)∵∠ODC=36°,直線DC,DA分別切⊙O于點(diǎn)C,點(diǎn)A,
∴∠ADC=2∠CDO=72°,
∴∠AOC=180°﹣∠ADC=108°,
∴∠BOC=72°,
∵AB=6,
∴OB=3,
∴的長(zhǎng)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一副含30°和45°角的三角板ABC和EDF拼合在個(gè)平面上,邊AC與EF重合,AC=12cm.當(dāng)點(diǎn)E從點(diǎn)A出發(fā)沿AC方向滑動(dòng)時(shí),點(diǎn)F同時(shí)從點(diǎn)C出發(fā)沿射線BC方向滑動(dòng).當(dāng)點(diǎn)E從點(diǎn)A滑動(dòng)到點(diǎn)C時(shí),點(diǎn)D運(yùn)動(dòng)的路徑長(zhǎng)為__cm;連接BD,則△ABD的面積最大值為___cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)△APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x1、x2是關(guān)于x的一元二次方程x2+(3a-1)x+2a2-1=0的兩個(gè)實(shí)數(shù)根,使得(3x1-x2)(x1-3x2)=-80成立,求其實(shí)數(shù)a的可能值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名同學(xué)做摸球游戲,他們把三個(gè)分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個(gè)不透明的口袋中.
(1)求從袋中隨機(jī)摸出一球,標(biāo)號(hào)是1的概率;
(2)從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校李老師布置了兩道解方程的作業(yè)題:
選用合適的方法解方程:
(1)x(x+1)=2x;(2)(x+1)(x﹣3)=7
以下是王萌同學(xué)的作業(yè):
解:(1)移項(xiàng),得x(x+1)﹣2x=0 分解因式得,x(x+1﹣2)=0 所以,x=0,或x﹣1=0 所以,x1=0,x2=1 | (2)變形得,(x+1)(x﹣3)=1×7 所以,x+1=7,x﹣3=1 解得,x1=6,x2=4 |
請(qǐng)你幫王萌檢查他的作業(yè)是否正確,把不正確的改正過(guò)來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰△ABC中,AB=AC,AD⊥BC于點(diǎn)D,點(diǎn)E是AD上的一點(diǎn),連接CE,將線段EC繞點(diǎn)E順時(shí)針旋轉(zhuǎn)一定的角度,使得點(diǎn)C落在了點(diǎn)F處,且滿(mǎn)足∠CEF=∠CAB,連接BF
(1)如圖,若∠BAC=60°,則線段AE與BF的數(shù)量關(guān)系為 ;
(2)如圖,若∠BAC=90°,求證:BF=AE:(寫(xiě)出證明過(guò)程)
(3)如圖.在(2)的條件下,連接FD并延長(zhǎng)分別交CE、CA于點(diǎn)M,N,BC=8,FD=DE,求△DCN和△CMN的面積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com