【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)與點(diǎn),拋物線經(jīng)過(guò)原點(diǎn),頂點(diǎn)是,且與軸交于另一點(diǎn),則_________

【答案】0

【解析】

根據(jù)待定系數(shù)法求得反比例函數(shù)的解析式,進(jìn)而求得m4,根據(jù)圖象上點(diǎn)的坐標(biāo)特征求得n的值,即可求得mn的值.

解:∵反比例函數(shù)k≠0)的圖象經(jīng)過(guò)點(diǎn)A5, ),
k8,
∴反比例函數(shù)為,

∵反比例函數(shù)k≠0)的圖象經(jīng)過(guò)點(diǎn)B2,m),
m4
B24),
設(shè)拋物線為ya(x2)4,
∵拋物線yax2bxca≠0)經(jīng)過(guò)原點(diǎn)O,
04a4
a1,
∴拋物線為yx24x
y0,解得x04,
C4,0),
n4,
mn440,
故答案為0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)軸正半軸上一點(diǎn),且的面積是,則_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,分別為邊、中點(diǎn),連接并延長(zhǎng)至點(diǎn),使得,連接

(1)求證:;

(2),,求四邊形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC4,AFBC于點(diǎn)FBHAC于點(diǎn)H.交AF于點(diǎn)G,點(diǎn)D在直線AF上運(yùn)動(dòng),BDDE,∠BDE135°,∠ABH45°,當(dāng)AE取最小值時(shí),BE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)店專(zhuān)售一款電動(dòng)牙刷,其成本為20/支,銷(xiāo)售中發(fā)現(xiàn),該商品每天的銷(xiāo)售量y(支)與銷(xiāo)售單價(jià)x(/支)之間存在如圖所示的關(guān)系.

(1)yx之間的函數(shù)關(guān)系式.

(2)由于湖北省武漢市爆發(fā)了新型冠狀病毒肺炎(簡(jiǎn)稱(chēng)新冠肺炎)疫情,該網(wǎng)店店主決定從每天獲得的利潤(rùn)中抽出200元捐獻(xiàn)給武漢,為了保證捐款后每天剩余利潤(rùn)不低于550元,如何確定這款電動(dòng)牙刷的銷(xiāo)售單價(jià)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)原點(diǎn)的拋物線與直線交于兩點(diǎn),其對(duì)稱(chēng)軸是直線,拋物線與軸的另一個(gè)交點(diǎn)為,線段軸交于點(diǎn)

1)求拋物線的解析式,并寫(xiě)出點(diǎn)的坐標(biāo);

2)若點(diǎn)為線段上一點(diǎn),且,點(diǎn)為線段上不與端點(diǎn)重合的動(dòng)點(diǎn),連接,過(guò)點(diǎn)作直線的垂線交軸于點(diǎn),連接,探究在點(diǎn)運(yùn)動(dòng)過(guò)程中,線段,有何數(shù)量關(guān)系?并證明所探究的結(jié)論;

3)設(shè)拋物線頂點(diǎn)為,求當(dāng)為何值時(shí),為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,以AB為直徑的⊙OAC于點(diǎn)M,弦MN∥BCAB于點(diǎn)E,且ME=1,AM=2,AE=

1)求證:BC⊙O的切線;

2)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線鈾交于兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為

1)求拋物線的表達(dá)式;

2)若將拋物線沿軸平移后得到拋物線,拋物線經(jīng)過(guò)點(diǎn)且與軸交于點(diǎn),頂點(diǎn)為.在拋物線上是否存在一點(diǎn)使?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線x2,下列結(jié)論:

4a+b0;②9a+c3b;③,3a+c0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.⑤m為任意實(shí)數(shù))其中正確的結(jié)論有_____.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案