如圖,四邊形是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)軸上,點(diǎn)軸上,將邊折疊,使點(diǎn)落在邊的點(diǎn)處.已知折疊,且

(1)判斷是否相似?請(qǐng)說(shuō)明理由;

(2)求直線軸交點(diǎn)的坐標(biāo);

(3)是否存在過(guò)點(diǎn)的直線,使直線、直線軸所圍成的三角形和直線、直線軸所圍成的三角形相似?如果存在,請(qǐng)直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請(qǐng)說(shuō)明理由.

解:(1)相似.

理由如下:

由折疊知,

,

,

(2),設(shè),則

由勾股定理得

由(1),得,

,

中,,

,解得

,點(diǎn)的坐標(biāo)為,

點(diǎn)的坐標(biāo)為,

設(shè)直線的解析式為

解得

,則點(diǎn)的坐標(biāo)為

(3)滿足條件的直線有2條:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作1:如圖1,一三角形紙片ABC,分別取AB、AC的中點(diǎn)D、E,連接DE,沿DE將紙片剪開,并將其中的△ADE紙片繞點(diǎn)E旋轉(zhuǎn)180°后可拼合(無(wú)重疊無(wú)縫隙)成平行四邊形紙片BCFD.
操作2:如圖2,一平行四邊形紙片ABCD,E、F、G、H分別是AB、BC、CD、AD邊的中點(diǎn),沿EF剪開并將其中的△BFE紙片繞點(diǎn)E旋轉(zhuǎn)180°到△AF1E位置;沿HG剪開并將其中的△DGH紙片繞點(diǎn)H旋轉(zhuǎn)180°到△AG1H位置;沿FG剪開并將△CFG紙片放置于△AF1G1的位置,此時(shí)四張紙片恰好拼合(無(wú)重疊無(wú)縫隙)成四邊形FF1G1G.則四邊形FF1G1G的形狀是
 

精英家教網(wǎng)
操作、思考并探究:
(1)如圖3,如果四邊形ABCD是任意四邊形(不是梯形或平行四邊形)的紙片,E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).依次沿EF、FG、GH、HE剪開得到四邊形紙片EFGH.請(qǐng)判斷四邊形紙片EFGH的形狀,并說(shuō)明理由.
(2)你能將上述四邊形紙片ABCD經(jīng)過(guò)恰當(dāng)?shù)丶羟泻笃春希o(wú)重疊無(wú)縫隙)成一個(gè)平行四邊形紙片?請(qǐng)?jiān)趫D4上畫出對(duì)應(yīng)的示意圖.
精英家教網(wǎng)
(3)如圖5,E、F、G、H分別是四邊形ABCD各邊的中點(diǎn),若△AEH、△BEF、△CFG、△DGH的面積分別為S1、S2、S3、S4,且S1=2,S3=5,則四邊形ABCD是面積是
 
.(不要求說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

操作1:如圖1,一三角形紙片ABC,分別取AB、AC的中點(diǎn)D、E,連接DE,沿DE將紙片剪開,并將其中的△ADE紙片繞點(diǎn)E旋轉(zhuǎn)180°后可拼合(無(wú)重疊無(wú)縫隙)成平行四邊形紙片BCFD.
操作2:如圖2,一平行四邊形紙片ABCD,E、F、G、H分別是AB、BC、CD、AD邊的中點(diǎn),沿EF剪開并將其中的△BFE紙片繞點(diǎn)E旋轉(zhuǎn)180°到△AF1E位置;沿HG剪開并將其中的△DGH紙片繞點(diǎn)H旋轉(zhuǎn)180°到△AG1H位置;沿FG剪開并將△CFG紙片放置于△AF1G1的位置,此時(shí)四張紙片恰好拼合(無(wú)重疊無(wú)縫隙)成四邊形FF1G1G.則四邊形FF1G1G的形狀是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遵義)如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個(gè)不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;
(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:
(1)若任意抽取其中一張卡片,抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是
1
4
1
4

(2)若任意抽出一張不放回,然后再?gòu)挠嘞碌某槌鲆粡垼?qǐng)用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對(duì)稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個(gè)不同的條件,將這4張紙牌背面朝上洗勻后,小明先隨機(jī)摸出一張放回洗勻后,小穎再隨機(jī)摸出一張.如果以兩次摸牌上的結(jié)果為條件,恰好能判斷四邊形ABCD是平行四邊形則小明勝,反正小穎勝.
(1)用樹狀圖(或列表法)求兩人獲勝的概率;
(2)如果小華先摸到①(不放回),則兩人誰(shuí)獲勝的概率大,為什么?
作業(yè)寶

查看答案和解析>>

同步練習(xí)冊(cè)答案