【題目】已知:的直徑,延長線上的任意一點,過點的切線,切點為,的平分線交于點

(1)如圖,若恰好等于,求的度數(shù);

(2)如圖,若點位于中不同的位置,的結(jié)論是否仍然成立?說明你的理由.

【答案】(1);(2)的大小不發(fā)生變化.理由見解析.

【解析】

(1)連接OC,則OCP=90°,根據(jù)CPA=30°,求得COP,再由OA=OC,得出A=∠ACO,由PD平分APC,即可得出CDP=45°.
(2)由PCO的切線,得OCP=90°.再根據(jù)PDCPA的平分線,得APC=2∠APD.根據(jù)OA=OC,可得出A=∠ACO,即COP=2∠A,在Rt△OCP中,OCP=90°,則COP+∠OPC=90°,從而得出CDP=∠A+∠APD=45°.所以CDP的大小不發(fā)生變化.

連接

的切線,

,

平分,

,

(2)的大小不發(fā)生變化.

的切線,

的平分線,

,

,

中,,

,

的大小不發(fā)生變化.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程。

1)求證:方程有兩個不相等的實數(shù)根;

2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一架外國偵察機沿方向侵入我國領空進行非法偵察,我空軍的戰(zhàn)斗機沿方向與外國偵察機平行飛行,進行跟蹤監(jiān)視,我機在處與外國偵察機處的距離為米,,這時外國偵察機突然轉(zhuǎn)向,以偏左的方向飛行,我機繼續(xù)沿方向以/秒的速度飛行,外國偵察機在點故意撞擊我戰(zhàn)斗機,使我戰(zhàn)斗機受損.問外國偵察機由的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC≌Rt△CED,點B、C、E在同一直線上,則結(jié)論:①AC=CD,②AC⊥CD,③BE=AB+DE,④AB∥ED,其中成立的有( 。

A. 僅① B. 僅①③ C. 僅①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A60°,點DBC邊的中點,DEBC,∠ABC的平分線BFDE△ABC內(nèi)一點P,連接PC

1)若∠ABP32°,求∠ACP的度數(shù);

2)若∠ACP,∠ABP,請直接寫出m,n滿足的關系式:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,C=90°,點O是AB的中點,邊AC的長為6,將一塊邊長足夠長的三角板的直角頂點放在O點處,將三角板繞著點O旋轉(zhuǎn),始終保持三角板的直角邊與AC相交,交點為點D,另一條直角邊與BC相交,交點為點E,則等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長度之和為( 。

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線都經(jīng)過坐標軸的正半軸上A(4,0),B兩點,該拋物線的對稱軸x=﹣1,與x軸交于點C,且∠ABC=90°,求:

(1)直線AB的解析式;

(2)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點在線段上運動(不與、重合),連接,作,交線段.

1)當時,______________;點運動時,逐漸變____________(填);

2)當時,求證:,請說明理由;

3)在點的運動過程中,的形狀也在改變,判斷當等于多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價x(元)的關系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?

(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

同步練習冊答案