分析 根據(jù)角平分線性質(zhì)即可推出②,根據(jù)勾股定理即可推出AR=AS,根據(jù)等腰三角形性質(zhì)推出∠QAP=∠QPA,推出∠QPA=∠BAP,根據(jù)平行線判定推出QP∥AB即可;求出PQ=CP=BP,根據(jù)AAS推出△BRP≌△QSP即可,然后根據(jù)線段垂直平分線的判定即可得到AP垂直平分RS.
解答 解:∵PR⊥AB,PS⊥AC,PR=PS,
∴點P在∠A的平分線上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,
∵AP=AP,PR=PS,
∴AR=AS,∴②正確;
∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴③正確;
∵△ABC是等邊三角形,
∴∠B=∠CAB=60°,AB=AC,
∵∠QAP=∠BAP,
∴BP=CP,
∵QP∥AB,
∴∠QPC=∠B=60°=∠C,
∴PQ=CQ,
∴△PQC是等邊三角形,
∴PQ=CP=BP,∠SQP=60°=∠B,
∵PR⊥AB,PS⊥AC,
∴∠BRP=∠PSQ=90°,
在△BRP和△QSP中,
$\left\{\begin{array}{l}{∠BRP=∠PSQ}\\{∠B=∠SQP}\\{BP=PQ}\end{array}\right.$,
∴△BRP≌△QSP,∴④正確;
連接RS,
∵PR=PS,
∴點P在RS的垂直平分線上,
∵AS=AR,
∴點A在RS的垂直平分線上,
∴AP垂直平分RS,∴①正確.
故答案為:①②③④.
點評 本題考查了等邊三角形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)和判定,角平分線性質(zhì)的應用,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{7}$ | B. | $\frac{7}{8}$ | C. | 2 | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com